Επισκόπιση των εκπαιδευτικών προσεγγίσεων της χρήσης των εικονικών εργαστηρίων στην εκπαίδευση επιστημών και τεχνολογίας


Δημοσιευμένα: Dec 21, 2017
Λέξεις-κλειδιά:
Εικονικά εργαστήρια εργαστήρια εκπαιδευτικές προσεγγίσεις
Αθανάσιος Σύψας
Δημήτρης Καλλές
Περίληψη

Oι νέες τεχνολογικές προσεγγίσεις δε χρησιμοποιούνται ευρέως στην εκπαίδευση  των επιστημών, της τεχνολογίας και της μηχανικής, λόγω των απαραίτητων εργαστηριακών πειραμάτων. Τα εικονικά εργαστήρια προσφέρουν μια υποστηρικτική λύση, ειδικά στην εξ αποστάσεως εκπαίδευση, όπου ο εργαστηριακός χρόνος στους χώρους του πανεπιστημίου είναι περιορισμένος. Έτσι, χρησιμοποιούνται διαφορετικές εκπαιδευτικές προσεγγίσεις, ώστε να διερευνηθεί η χρησιμότητα που μπορούν να προσφέρουν τα εικονικά εργαστήρια. Αυτές περιλαμβάνουν την προ-εργαστηριακή πρακτική, τη συνδυασμένη χρήση και την αυτόνομη προσέγγιση. Το ενδιαφέρον εστιάζεται στη βιβλιογραφική επισκόπηση ερευνών που σχετίζονται με τη χρήση εικονικών εργαστηρίων στην εκπαίδευση επιστημών και τεχνολογίας και αφορά στις εκπαιδευτικές προσεγγίσεις που υιοθετούνται. Οι περισσότερες μελέτες πρότειναν ότι η συνδυασμένη χρήση (μεικτή προσέγγιση) φαίνεται να είναι προτιμότερη, καθώς θα μπορούσε να προσφέρει τα πλεονεκτήματα και των δύο προσεγγίσεων.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Άρθρα
Βιογραφικά Συγγραφέων
Αθανάσιος Σύψας, Ελληνικό Ανοικτό Πανεπιστήμιο

Σχολή Θετικών Επιστημών και Τεχνολογίας

Υπ. Διδάκτορας

Δημήτρης Καλλές, Ελληνικό Ανοικτό Πανεπιστήμιο

Σχολή Θετικών Επιστημών και Τεχνολογίας

 Αναπληρωτής Καθηγητής
Αναφορές
Abdulwahed, M., & Nagy, Z. K. (2011). The TriLab, a novel ICT based triple access mode laboratory education model. Computers and Education, 56(1), 262–274. https://doi.org/10.1016/j.compedu.2010.07.023
Abdulwahed, M., & Nagy, Z. K. (2013). Developing the TriLab, a triple access mode (hands-on, virtual, remote) laboratory, of a process control rig using LabVIEW and Joomla. Computer Applications in Engineering Education, 21(4), 614–626. https://doi.org/10.1002/cae.20506
Akpan, J. P. (2001). Issues Associated with Inserting Computer Simulations into Biology Instruction: A Review of the Literature. Electronic Journal of Science Education, 5(3), 17–18. Retrieved from http://unr.edu/homepage/crowther/ejse/akpan.html
Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18. https://doi.org/10.1037/a0021017
Babateen, H. (2011). The role of Virtual Laboratories in Science Education. International Proceedings of Computer Science and …, 12, 100–104. Retrieved from http://www.ipcsit.com/vol12/19-ICDLE2011E10013.pdf
Bonde, M. T., Makransky, G., Wandall, J., Larsen, M. V, Morsing, M., Jarmer, H., & Sommer, M. O. a. (2014). Improving biotech education through gamified laboratory simulations. Nature Biotechnology, 32(7), 694–697. https://doi.org/10.1038/nbt.2955
Brinson, J. R. (2015). Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical research. Computers and Education, 87, 218–237. https://doi.org/10.1016/j.compedu.2015.07.003
Cavin, C. S., & Lagowski, J. J. (1978). Effects of Computer Simulated or Laboratory. Journal of Research in Science Teaching, 15(6), 455–463.
Chandler, P., & Sweller, J. (1991). Cognitive Load Theory and the Format of Instruction. Cognition and Instruction, 8(4), 293–332. https://doi.org/Chandler & Sweller (1991).pdf. (n.d.).
Cook, D. A. (2014). How much evidence does it take? A cumulative meta-analysis of outcomes of simulation-based education. Medical Education, 48(8), 750–760. https://doi.org/10.1111/medu.12473
Cook, D. A., Hamstra, S. J., Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., … Hatala, R. (2013). Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Medical Teacher (Vol. 35). https://doi.org/10.3109/0142159X.2012.714886
Dalgarno, B., Bishop, A. G., Adlong, W., & Bedgood, D. R. (2009). Effectiveness of a Virtual Laboratory as a preparatory resource for Distance Education chemistry students. Computers and Education, 53(3), 853–865. https://doi.org/10.1016/j.compedu.2009.05.005
de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: the Go-Lab federation of online labs. Smart Learning Environments, 1(1), 3. https://doi.org/10.1186/s40561-014-0003-6
De Jong, T., & Van Joolingen, W. R. (1998). Scientific Discovery Learning with Computer Simulations of Conceptual Domains. Review of Educational Research, 68(2), 179–201. https://doi.org/10.3102/00346543068002179
Diwakar, S., Kumar, D., Radhamani, R., Nizar, N., Nair, B., Sasidharakurup, H., & Achuthan, K. (2015). Role of ICT-enabled virtual laboratories in biotechnology education: Case studies on blended and remote learning. In Proceedings of 2015 International Conference on Interactive Collaborative Learning, ICL 2015 (pp. 915–921). https://doi.org/10.1109/ICL.2015.7318149
Domingues, L., Rocha, I., Dourado, F., Alves, M., & Ferreira, E. C. (2010). Virtual laboratories in (bio)chemical engineering education. Education for Chemical Engineers, 5(2), 22–27. https://doi.org/10.1016/j.ece.2010.02.001
Feisel, L. D., & Rosa, A. J. (2005). The Role of the Laboratory in Undergraduate Engineering Education. American Society for Engineering Education, 94(1), 121–130. https://doi.org/10.1002/j.2168-9830.2005.tb00833.x
Ford, D. N., & McCormack, D. E. M. (2000). Effects of Time Scale Focus on System Understanding in Decision Support Systems. Simulation & Gaming, 31(3), 309–330. https://doi.org/10.1177/104687810003100301
Gibbons, N. J., Evans, C., Payne, A., Shah, K., & Griffin, D. K. (2004). Computer Simulations Improve University Instructional Laboratories. Cell Biology Education, 3(4), 263–269. https://doi.org/10.1187/cbe.04-06-0040
Gomes, L., & Bogosyan, S. (2009). Current Trends in Remote Laboratories. IEEE Transactions on Industrial Electronics, 56(12), 4744–4756.
Gravier, C., Fayolle, J., Bayard, B., Ates, M., & Lardon, J. (2008). State of the Art About Remote Laboratories Paradigms – Foundations of Ongoing Mutations. International Journal of Online Engineering (iJOE), 4(1), 19–25. Retrieved from http://www.online-journals.org/index.php/i-joe/article/view/480
Heradio, R., De La Torre, L., Galan, D., Cabrerizo, F. J., Herrera-Viedma, E., & Dormido, S. (2016). Virtual and remote labs in education: A bibliometric analysis. Computers and Education, 98, 14–38. https://doi.org/10.1016/j.compedu.2016.03.010
Hofstein, A., & Lunetta, V. N. (2004). The Laboratory in Science Education: Foundations for the Twenty-First Century. Science Education, 88(1), 28–54. https://doi.org/10.1002/sce.10106
Huppert, J., Lomask, S. M., & Lazarowitz, R. (2002). Computer simulations in the high school: students’ cognitive stages, science process skills and academic achievement in microbiology. International Journal of Science Education, 24(8), 803–821. Retrieved from http://10.0.4.56/09500690110049150%5Cnhttp://search.ebscohost.com/login.aspx?direct=true&db=eue&AN=507778982&site=ehost-live
Jonassen, D., & Land, S. (2012). Theoretical foundations of learning environments. (Routledge, Ed.).
Jong, T. de, Linn, M. C., & Zacharia, Z. (2013). Physical and Virtual Laboratories in Science and Engineering Education, 340(April), 305–308.
Karakasidis, T. (2013). Virtual and remote labs in higher education distance learning of physical and engineering sciences. IEEE Global Engineering Education Conference, EDUCON, 798–807. https://doi.org/10.1109/EduCon.2013.6530198
Keegan, D. J. (1980). On defining distance education. Distance Education, 1(1), 13–36. https://doi.org/10.1080/0158791800010102
Kollöffel, B., & de Jong, T. A. J. M. (2013). Conceptual understanding of electrical circuits in secondary vocational engineering education: Combining traditional instruction with inquiry learning in a virtual lab. Journal of Engineering Education, 102(3), 375–393. https://doi.org/10.1002/jee.20022
Kumar, D., Singanamala, H., Achuthan, K., Srivastava, S., Nair, B., & Diwakar, S. (2014). Implementing a Remote-Triggered Light Microscope. Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing - ICONIAAC ’14, 1–6. https://doi.org/10.1145/2660859.2660963
Lee, J. (1999). Effectiveness of computer-based instructional simulation: A meta analysis. International Journal of Instructional Media, 26(1), 71–85. Retrieved from http://www.questia.com/googleScholar.qst?docId=5001238108
Limniou, M., Papadopoulos, N., & Whitehead, C. (2009). Integration of simulation into pre-laboratory chemical course: Computer cluster versus WebCT. Computers and Education, 52(1), 45–52. https://doi.org/10.1016/j.compedu.2008.06.006
Liu, H. C., Andre, T., & Greenbowe, T. (2008). The impact of learner’s prior knowledge on their use of chemistry computer simulations: A case study. Journal of Science Education and Technology, 17(5), 466–482. https://doi.org/10.1007/s10956-008-9115-5
Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories. ACM Computing Surveys, 38(3), 7–es. https://doi.org/10.1145/1132960.1132961
Makransky, G., Thisgaard, M. W., & Gadegaard, H. (2016). Virtual simulations as preparation for lab exercises: Assessing learning of key laboratory skills in microbiology and improvement of essential non-cognitive skills. PLoS ONE, 11(6), 1–11. https://doi.org/10.1371/journal.pone.0155895
Martinez-Jiménez, P., Pontes-Pedrajas, A., Polo, J., & Climent-Bellido, M. S. (2003). Learning in chemistry with virtual laboratories. Journal of Chemical Education, 80(3), 346–352. https://doi.org/10.1021/ed080p346
McGaghie, W. C., Issenberg, S. B., Cohen, M. E. R., Barsuk, J. H., & Wayne, D. B. (2012). Does Simulation-based Medical Education with Deliberate Practice Yield Better Results than Traditional Clincal Education? A Meta-Analytic Comparative Review of the Evidence, 86(6), 706–711. https://doi.org/10.1097/ACM.0b013e318217e119.Does
Noguez, J., & Sucar, L. E. (2006). Intelligent virtual laboratory and project-oriented learning for teaching mobile robotics. International Journal of Engineering Education, 22(4), 743–757.
Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327. https://doi.org/10.1016/j.compedu.2016.02.002
Puspitasari, R., Hidayat, W., & Nurul, S. (2014). Virtual Lab of Analog AVO Meter to Train Students ’ Initial Skills before Doing Laboratory Works in Electrical Measurements, (Icaet), 117–120.
Pyatt, K., & Sims, R. (2012). Virtual and Physical Experimentation in Inquiry-Based Science Labs: Attitudes, Performance and Access. Journal of Science Education and Technology, 21(1), 133–147. https://doi.org/10.1007/s10956-011-9291-6
Ramasundaram, V., Grunwald, S., Mangeot, A., Comerford, N. B., & Bliss, C. M. (2005). Development of an environmental virtual field laboratory. Computers and Education, 45(1), 21–34. https://doi.org/10.1016/j.compedu.2004.03.002
Ramos, S., Pimentel, E. P., Marietto, G. B., & Botelho, W. T. (2016). Hands-on and Virtual Laboratories to Undergraduate Chemistry Education : Toward a Pedagogical Integration.
Rivers, R. H., & Vockell, E. (1987). Computer simulations to stimulate scientific problem solving. Journal of Research in Science Teaching, 24(5), 403–415. https://doi.org/10.1002/tea.3660240504
Rossiter, A., & Rossiter, A. (2016). ScienceDirect production cost virtual modelling production cost virtual modelling production cost virtual modelling production cost virtual modelling control laboratories for chemical control laboratories for chemical control laboratories for chemical con, 230–235.
Rutten, N., Van Joolingen, W. R., & Van Der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers and Education, 58(1), 136–153. https://doi.org/10.1016/j.compedu.2011.07.017
Smetana, L. K., & Bell, R. L. (2012). Computer Simulations to Support Science Instruction and Learning : A critical review of the literature Computer Simulations to Support Science Instruction and Learning : A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370. https://doi.org/10.1080/09500693.2011.605182
Triona, L. M., & Klahr, D. (2003). Point and Click or Grab and Heft: Comparing the Influence of Physical and Virtual Instructional Materials on Elementary School Students’ Ability to Design Experiments. Cognition and Instruction, 21(2), 149–173. https://doi.org/10.1207/S1532690XCI2102_02
Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers and Education, 54(4), 1078–1088. https://doi.org/10.1016/j.compedu.2009.10.012
Tüysüz, C. (2010). The effect of the virtual laboratory on students’ achievement and attitude in chemistry. International Online Journal of Educational Sciences, 2(1), 37–53. https://doi.org/13092707
van Berkum, J., & de Jong, T. (1991). Instructional environments for simulations. Education and Computing, 6(3–4), 305–358. https://doi.org/10.1016/0167-9287(91)80006-J
Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. a., Muse, K., & Wright, M. (2006). Computer gaming and interactive simulations for learning: A meta-analysis. Journal of Educational Computing Research, 34(3), 229–243. https://doi.org/10.2190/FLHV-K4WA-WPVQ-H0YM
Vosniadou, S., & Kollias, V. (2001). Information and Communication Technology and the Problem of Teacher Training : Myths , Dreams , and the Harsh Reality. Themes in Education, 2(4), 341–365.
Wang, C.Y., Wu, H.K., Lee, S.W.Y., Hwang, F.K., Chang, H.Y., Wu, Y.T., Chiou, G.L., Chen, S., Liang, J.C., Lin, J.W. and Lo, H. . (2014). A Review of Research on Technology-Assisted School Science Laboratories. Educational Technology & Society, 17(2), 17, 307–320.
Wiesner, T. F., & Lan, W. (2004). Comparison of Student Learning in Physical and Simulated Unit Operations Experiments. Journal of Engineering Education, 93(3), 195–204. https://doi.org/10.1002/j.2168-9830.2004.tb00806.x
Zacharia, Z. C., & Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21(3), 317–331. https://doi.org/10.1016/j.learninstruc.2010.03.001
Zafeiropoulos, V., & Kalles, D. (2016). Performance Evaluation in Virtual Lab Training. In The Online, Open and Flexible Higher Education Conference 2016.
Zafeiropoulos, V., Kalles, D., Sgourou, A., & Kameas, A. (2014). Adventure-style serious game for a science lab. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8719 LNCS, 538–541. https://doi.org/10.1007/978-3-319-11200-8_60
Zervas, P., Fiskilis, S., & Sampson, D. G. (2014). ASK4Labs: A web-based repository for supporting learning design driven remote and virtual labs recommendations. 11th International Conference on Cognition and Exploratory Learning in Digital Age, CELDA 2014, 172–179.