Design, implementation, and assessment of an IB-ARGI on Electric Circuits for Primary Education students
Published:
Apr 6, 2025
Keywords:
IB-ARGI Inquiry-Based Learning Universal Design for Learning Αlternate Reality Games Didactics of Physics
Abstract
The study presents the design, development, and assessment of an Inclusive Inquiry-Based Alternate Reality Game (IB-ARGI) on the topic of "Electric Circuit" for primary school students. The assessment of IB-ARGI was conducted using a pre-post test questionnaire to assess the learning outcomes of the intervention, as well as a post-intervention questionnaire to collect students' opinions on the IB-ARGI approach. A total of 59 fifth-grade primary school students participated in the study. The results demonstrated a statistically significant improvement in students’ learning outcomes and a positive attitude of the students toward the IB-ARGI approach.
Article Details
- Section
- 14th Panhellenic Conference of Didactics in Science Education
Downloads
Download data is not yet available.
References
Καριώτογλου, Π., Μολοχίδης, Τ., & Μπάρμπας, Αλ. (2011). Έννοιες Φυσικών Επιστημών ΙΙ και η διδασκαλία τους – Εργαστηριακό μέρος. Παιδαγωγικό Τμήμα Νηπιαγωγών, Πανεπιστήμιο Δυτικής Μακεδονίας.
Σπύρτου, Α. (Χ.χ.). Λειτουργία ηλεκτρικού κυκλώματος - Σύνδεση σε σειρά και παράλληλα - Ηλεκτρομαγνητισμός (Αδημοσίευτο εκπαιδευτικό υλικό). Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης, Πανεπιστήμιο Δημοτικής Εκπαίδευσης.
Chu, S. K. W., Reynolds, R. B., Tavares, N. J., Notari, M., & Lee, C. W. Y. (2021). 21st century skills development through inquiry-based learning from theory to practice. Springer.
Elsom, S., Stieler-Hunt, C., & Marshman, M. (2023). Supporting learn ing in higher education with a curriculum-embedded alternate reality game. Interactive Learning Environments, 31(1–2), 1–12.
Meyer, A., Rose, D. H., & Gordon, D. T. (2014). Universal design for learning: Theory and practice. CAST Professional Publishing.
Pedaste, M., Mäeots, M., Leijen, Ä., & Sarapuu, T. (2012). Improving students’ inquiry skills through reflection and self-regulation scaffolds. Technology, Instruction, Cognition and Learning, 9(1–2), 81–95.
Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61.
Schalk, L., Edelsbrunner, P. A., Deiglmayr, A., Schumacher, R., & Stern, E. (2019). Improved application of the control-of variables strategy as a collateral benefit of inquiry-based physics education in elementary school. Learning and Instruction, 59, 34–45.
Sofianidis A., Skraparlis C., & Stylianidou N.. (2024). Combining Inquiry, Universal Design for Learning, Alternate Reality Games and Augmented Reality Technologies in Science Education: The IB-ARGI Approach and the Case of Magnetman. Journal of Science Education and Technology. https://doi.org/10.1007/s10956-024-10135-7
Tulloch, R., Wolfenden, H., & Sercombe, H. (2021). Designing alter nate reality games for effective learning: A methodology for implementing multimodal persistent gaming in university educa tion. Media Practice and Education, 22(2), 136–152.
Yuen, S.C.-Y., Yaoyuneyong, G., & Johnson, E. (2013). Augmented reality and education: Applications and potentials. In R. Huang, Kinshuk, & J. M. Spector (Eds.), Reshaping learning: New fron tiers of educational research (pp. 385–414). Berlin, Heidelberg: Springer.