Procedural knowledge and skills in inquiry teaching and learning


Published: Sep 12, 2024
Keywords:
Procedural knowledge skills inquiry teaching
Chrysoula Karagianni
Dimitrios Psillos
Abstract

The purpose of this paper is to investigate whether the implementation of an innovative inquiry-based Learning Sequence (TLS) that integrates virtual and real workshops contributes to the construction of procedural knowledge and practices related to question formulation and experimental design. The sample of this research consisted of 30 5th grade students. During the TLS, students were taught explicitly how to formulate scientifically oriented questions and experimental design. The results of the intervention demonstrate an improvement in procedural knowledge and corresponding skills for both inquiry skills.

Article Details
  • Section
  • SYMPOSIUM
Downloads
References
Lederman, J., Lederman, N., Bartels, S., and Jimenez, J. (2019). An international collaborative investigation of beginning seventh grade students' understandings of scientific inquiry: Establishing a baseline. Journal of Research in Science Teaching, 56(4), 486-515. https://doi.org/10.1002/tea.21512
Lederman, N. G., & Lederman, J. S. (2019). Teaching and Learning of Nature of Scientific Knowledge and Scientific Inquiry: Building Capacity through Systematic Research-Based Professional Development. Journal of Science Teacher Education, 30(7), 737-762. https://doi.org/10.1080/1046560X.2019.1625572
Bell, R. L., Blair, L. M., Crawford, B. A., & Lederman, N. G. (2003). Just do it?: Impact of a science apprenticeship program on high school students’ understandings of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487–509. https://doi.org/10.1002/tea.10086
Lazonder, A. W., & Egberink, A. (2014). Children’s acquisition and use of the control-of-variables strategy: effects of explicit and implicit instructional guidance. Instructional Science, 42(2), 291– 304. https://doi.org/10.1007/s11251-013-9284-3
Lefkos, I., Psillos, D. & Hatzikraniotis, E. (2011). Designing experiments on thermal interactions by secondary students in a simulated laboratory environment, Research in Science & Technological Education 29(2), 189- 204
Lorch, R. F., Lorch, E. P., Calderhead, W. J., Dunlap, E. E., Hodell, E. C., & Freer, B. D. (2010). Learning the control of variables strategy in higher and lower achieving classrooms: contributions of explicit instruction and experimentation. Journal of Educational Psychology, 102(1), 90–101. https://doi.org/10.1037/a0017972
Κaragianni, H., & Psillos, D. (2022). Investigating the effectiveness of Explicit and Implicit Inquiry-Oriented Instruction on Primary Students views about the non-linear nature of inquiry. International Journal of Science Education. https://doi.org/10.1080/09500693.2022.2050486
Kuhn, D., Arvidsson, T. S., Lesperance, R., & Corprew, R. (2017). Can engaging in science practices promote deep understanding of them? Science Education, 101(2), 232–250. https://doi.org/10.1002/sce.21263
National Research Council. (2012). A framework forK–12 science education: Practices, crosscutting concepts, and core ideas.Washington, DC: The National Academies Press.
NGSS Lead States (2013). Next generation science standards: For States, By States. Washington, DC: National Academies Press. Retrieved from http://www.nextgenscience.org/trademark-andcopyright-guidelines#4.0
Pedrosa-de-Jesus, H. & Aurora Moreira, Betina Lopes & Mike Watts (2014). So much more than just a list: exploring the nature of critical questioning in undergraduate sciences. Research in Science & Technological Education, 32(2), 115-134. https://doi.org/10.1080/02635143.2014.902811
Psillos, D., & Kariotoglou, P. (2016). Theoretical Issues Related to Designing and Developing Teaching-Learning Sequences. In D.Psillos and P. Kariotoglou ( Eds.), Iterative Design of Teaching-Learning Sequences, 11 – 34. https://doi.org/10.1007/978-94-007-7808-5_2 .
Taramopoulos, A. & Psillos, D. (2022). Developing procedural knowledge in secondary education students. Journal of Physics: Conference Series. 2297.012010. https://doi.org/10.1088/1742-6596/2297/1/012010
Vorholzer, A., von Aufschnaiter, C. & Boone, W.J. (2020). Fostering Upper Secondary Students' Ability to Engage in Practices of Scientific Investigation: a Comparative Analysis of an Explicit and an ImplicitInstructional Approach, Res Sci Educ, 50, 333 – 359. https://doi.org/10.1007/s11165-018-9691-1
Yerdelen-Damar, S., & Eryılmaz, A. (2019). Promoting Conceptual Understanding with Explicit Epistemic Intervention in Metacognitive Instruction: Interaction Between the Treatment and Epistemic Cognition. Res Sci Educ. https://doi.org/10.1007/s11165-018-9807-7.