Αξιολογώντας την ανάπτυξη δεξιοτήτων διερεύνησης και κριτικής σκέψης μαθητών σε εργαστήρια Φυσικής με την υποστήριξη φορητών ψηφιακών συσκευών (IB-mlabs)
Δημοσιευμένα:
Σεπ 12, 2024
Λέξεις-κλειδιά:
Διερευνητική μάθηση φορητές ψηφιακές συσκευές δεξιότητες διερεύνησης κριτική σκέψη
Περίληψη
Η διερευνητική μάθηση (inquiry-based learning) αποτελεί τον διδακτικό μετασχηματισμό επιστημονικών μεθόδων και βοηθά στην ανάπτυξη δεξιοτήτων διερεύνησης, κριτικής σκέψης & επίλυσης προβλήματος. Η αξιοποίηση των ψηφιακών φορητών συσκευών συνεπικουρούν στην ανάπτυξη αυτών των δεξιοτήτων. Στην παρούσα εργασία περιγράφεται ο σχεδιασμός και εφαρμογή παρεμβάσεων διερευνητικού τύπου με την αξιοποίηση φορητών ψηφιακών συσκευών σε μαθητές της Γ’ Γυμνασίου, ενώ παρουσιάζονται και τα ευρήματα σχετικά με την ανάπτυξη δεξιοτήτων διερεύνησης, κριτικής σκέψης & επίλυσης προβλήματος από τους μαθητές.
Λεπτομέρειες άρθρου
- Ενότητα
- ΣΥΜΠΟΣΙΑ
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
AAAS (1993). Benchmarks for science literacy, a project 2061 report. Oxford University Press.
Arantika, J., Saputro, S., & Mulyani, S. (2019). Effectiveness of guided inquiry-based module to improve science process skills. In Journal of physics: conference series (Vol. 1157, No. 4, p. 042019). IOP Publishing. http://dx.doi.org/10.1088/1742-6596/1157/4/042019
Cavus, N., & Uzunboylu, H. (2009). Improving critical thinking skills in mobile learning. Procedia-Social and Behavioral Sciences, 1(1), 434-438. https://doi.org/10.1016/j.sbspro.2009.01.078
Chen, S., Chang, W. H., Lai, C. H., & Tsai, C. Y. (2014). A Comparison of Students’ Approaches to Inquiry, Conceptual Learning, and Attitudes in Simulation-Based and Microcomputer-Based Laboratories. Science Education, 98(5), 905–935. https://doi.org/10.1002/sce.21126
Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science education, 86(2), 175-218. https://doi.org/10.1002/sce.10001
Condon, W., & Kelly-Riley, D. (2004). Assessing and teaching what we value: The relationship between college-level writing and critical thinking abilities. Assessing Writing, 9(1), 56-75. https://doi.org/10.1016/j.asw.2004.01.003
Constantinou, C.P., Tsivitanidou, O.E., Rybska, E. (2018). What Is Inquiry-Based Science Teaching and Learning?. In: Tsivitanidou, O., Gray, P., Rybska, E., Louca, L., Constantinou, C. (eds) Professional Development for Inquiry-Based Science Teaching and Learning. Contributions from Science Education Research, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-91406-0_1
Hackling, M. W. (2005). Working scientifically: Implementing and assessing open investigation work in science. Department of Education and Training, Western Australia. ISBN 0 7307 4146 X.
Hwang, G. J., Li, K. C., & Lai, C. L. (2020). Trends and strategies for conducting effective STEM research and applications: A mobile and ubiquitous learning perspective. International Journal of Mobile Learning and Organisation, 14(2), 161-183. https://doi.org/10.1504/IJMLO.2020.106166
Hwang, G. J., Lai, C. L., Liang, J. C., Chu, H. C., & Tsai, C. C. (2018). A long-term experiment to investigate the relationships between high school students’ perceptions of mobile learning and peer interaction and higher-order thinking tendencies. Educational Technology Research and Development, 66(1), 75-93. https://doi.org/10.1007/s11423-017-9540-3
Kelly-Riley, D., Brown, G., Condon, B., & Law, R. (2008). Washington State University Critical Thinking Project: Resource Guide.
Kurfiss, J. G. (1988). Critical Thinking: Theory, Research, Practice, and Possibilities. ASHE-ERIC Higher Education Report No. 2, 1988. ASHE-ERIC Higher Education Reports, The George Washington University, One Dupont Circle, Suite 630, Dept. RC, Washington, DC 20036-1183.
Lefkos, I., Psillos, D., & Hatzikraniotis, E. (2010). Talking physics in inquiry based virtual laboratory activities. In CBLIS Conference Proceedings 2010 Application of new technologies in science and education. CY - Λευκωσία: University of Cyprus. Ανακτήθηκε στις 01/8/2023 από το https://gnosis.library.ucy.ac.cy/handle/7/64752
Liu, C., Zowghi, D., Kearney, M., & Bano, M. (2021). Inquiry-based mobile learning in secondary school science education: A systematic review. Journal of Computer Assisted Learning, 37(1), 1–23. https://doi.org/10.1111/jcal.12505
National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academies Press.
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.
OECD. (2005). PISA 2003 Technical Report. Paris: OECD
Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A., Kamp, E. T., Manoli C.C., Zacharias C.Z. & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational research review, 14, 47-61. https://doi.org/10.1016/j.edurev.2015.02.003
Rane, L. V. (2018). Rane, L. V. (2018). Microcomputer Based Laboratory–An effective instructional tool: A review. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), 5(1), 530-538.
Santos, L. F. (2017). The role of critical thinking in science education. Online Submission, 8(20), 160-173.
SPARKvue (4.7.1.8). (2014). [Mobile app]. PASCO. https://www.pasco.com/products/software/sparkvue
Suárez, Á., Specht, M., Prinsen, F., Kalz, M., & Ternier, S. (2018). A review of the types of mobile activities in mobile inquiry-based learning. Computers and Education, 118, 38–55. https://doi.org/10.1016/j.compedu.2017.11.004.