Διδακτική προσέγγιση του 1ου και 3ου Νόμου του Νεύτωνα με τη χρήση εφαρμογών επαυξημένης πραγματικότητας
Δημοσιευμένα:
Σεπ 16, 2024
Λέξεις-κλειδιά:
Επαυξημένη Πραγματικότητα παρανοήσεις μαθητών επίλυση προβλημάτων φυσικής διδασκαλία 1ου και 3ου Νόμου του Νεύτωνα
Περίληψη
Η παρούσα εργασία μελετά την επίδραση διδακτικής παρέμβασης στον 1ο και 3ο νόμο του Νεύτωνα. Η διδακτική παρέμβαση ενσωματώνει δραστηριότητες με εφαρμογές Επαυξημένης Πραγματικότητας με σκοπό την κατανόηση των φυσικών εννοιών. Οι εφαρμογές αναδεικνύουν τον αναπαραστατικό χαρακτήρα της εφαρμογής των φυσικών εννοιών και στοχεύουν στη μείωση των αντίστοιχων παρανοήσεων και τη βελτίωση της ικανότητας των μαθητών στην επίλυση προβλημάτων. Σύμφωνα με τα αποτελέσματα, οι μαθητές της πειραματικής ομάδας εμφάνισαν σημαντικά μεγαλύτερα ποσοστά επιτυχίας σε σχέση με τους μαθητές της ομάδας ελέγχου, ενώ παράλληλα η αξιολόγηση της διδακτικής παρέμβασης ανέδειξε τη βελτίωση της κατανόησης των εννοιών, της συμμετοχής των μαθητών και των κινήτρων μάθησης.
Λεπτομέρειες άρθρου
- Ενότητα
- ΑΝΑΡΤΗΜΕΝΕΣ ΑΝΑΚΟΙΝΩΣΕΙΣ
Λήψεις
Τα δεδομένα λήψης δεν είναι ακόμη διαθέσιμα.
Αναφορές
Γεωργόπουλος, Κ., & Κολέζα, Ε. (2008). Διδακτικά προβλήματα από την μη συνύπαρξη Μαθηματικών και Φυσικής στο πρόγραμμα σπουδών. Στο Κ. Σκορδούλης, Θ. Νικολαΐδης, Ε. Κολέζα, Δ. Χασάπης (επιμ.), Πρακτικά 4ης Συνάντησης Αθηνών - Ζητήματα Επιστήμης: Ιστορία, Φιλοσοφία και Διδακτική, (σ. 245-256)
Cai, S., Chiang, F. K., & Wang, X. (2013). Using the augmented reality 3D technique for a convex imaging experiment in a physics course. International Journal of Engineering Education, 29(4), 856–865.
Carroll, R. G. (1993). Evaluation of vignette-type examination items for testing medical physiology. The American Journal of Physiology, 264(6 Pt 3). https://doi.org/10.1152/advances.1993.264.6.s11
Checkley, D. (2010). High School Students’ Perception of Physics. University of Lethbridge, Februari.
Daineko, Y., Ipalakova, M., Tsoy, D., Shaipiten, A., Bolatov, Z., & Chinibayeva, T. (2018). Development of practical tasks in physics with elements of augmented reality for secondary educational institutions. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 10850 LNCS (pp. 404–412). https://doi.org/10.1007/978-3-319-95270-3_34
Dunleavy, M., & Dede, C. (2014). Augmented reality teaching and learning. Handbook of Research on Educational Communications and Technology: Fourth Edition, 735–745. https://doi.org/10.1007/978-1-4614-3185-5_59
Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics through play in an augmented reality environment. International Journal of Computer-Supported Collaborative Learning, 7(3), 347–378. https://doi.org/10.1007/s11412-012-9150-3
Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers and Education, 142, 103635. https://doi.org/10.1016/j.compedu.2019.103635
Fischer, C., & Rieck, K. (2016). Improving Teaching in Science and Mathematics. Proven Programs in Education: Classroom Management & Assessment, 110–115. https://doi.org/10.4135/9781483365633.n23
Fowell, S. L., Southgate, L. J., & Bligh, J. G. (1999). Evaluating assessment: The missing link? Medical Education, 33(4), 276–281. https://doi.org/10.1046/j.1365-2923.1999.00405.x
Harun, Tuli, N., & Mantri, A. (2020). Experience Fleming’s rule in electromagnetism using augmented reality: Analyzing impact on students learning. Procedia Computer Science, 172, 660–668. https://doi.org/10.1016/j.procs.2020.05.086
Harwanto, U. N. (2019). What Makes Introductory Physics Difficult? Jurnal Saintika Unpam : Jurnal Sains Dan Matematika Unpam, 2(1), 28. https://doi.org/10.32493/jsmu.v2i1.2916
Heck, A. & Ellermeijer, T. (2010). Mathematics assistants: meeting the needs of secondary school physics education. Acta Didactica Napocensia, 3(2), 17-34
Ibanez, M. B., Di-Serio, A., Villaran-Molina, D., & Delgado-Kloos, C. (2015). Augmented Reality-Based Simulators as Discovery Learning Tools: An Empirical Study. IEEE Transactions on Education, 58(3), 208–213. https://doi.org/10.1109/TE.2014.2379712
Ibanez, M. B., Di-Serio, A., Villaran-Molina, D., & Delgado-Kloos, C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers and Education, 71, 1–13. https://doi.org/10.1016/j.compedu.2013.09.004
Inye, H. (2011). Attitudes of Students Towards Science and Science Education in Nigeria. (a Case Study in Selected Secondary Schools in Obio/Akpor Local Government Area of Rivers State). Continental Journal of Education Research, 4(2), 33–51.
Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). “Making it real”: Exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3–4), 163–174. https://doi.org/10.1007/s10055-006-0036-4
Morales, A. D., Sanchez, S. A., Pineda, C. M., & Romero, H. J. (2019). Use of Augmented Reality for the Simulation of Basic Mechanical Physics Phenomena. IOP Conference Series: Materials Science and Engineering, 519(1), 012021. https://doi.org/10.1088/1757-899X/519/1/012021
Ogunleye, A. O. (2009). Teachers And Students Perceptions Of Students Problem-Solving Difficulties In Physics: Implications For Remediation. Journal of College Teaching & Learning (TLC), 6(7). https://doi.org/10.19030/tlc.v6i7.1129
Redish, E. F. (1994). Implications of cognitive studies for teaching physics. American Journal of Physics, 62(9), 796–803. https://doi.org/10.1119/1.17461
Sung, N. J., Ma, J., Choi, Y. J., & Hong, M. (2019). Real-time augmented reality physics simulator for education. In Applied Sciences (Switzerland) (Vol. 9, Issue 19). https://doi.org/10.3390/app9194019
Taib, F., & Yusoff, M. S. B. (2014). Difficulty index, discrimination index, sensitivity and specificity of long case and multiple choice questions to predict medical students’ examination performance. Journal of Taibah University Medical Sciences, 9(2), 110–114. https://doi.org/10.1016/j.jtumed.2013.12.002
Techakosit, S., & Nilsook, P. (2015). Using Augmented Reality for Teaching Physics. In International E-Learning Conference 2015, Thailand Cyber University. (Issue July).
Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316
Tuminaro, J. & Redish, E. F. (2004). Understanding Students' Poor Performance on Mathematical Problem Solving in Physics. In J. Marx, S. Franklin, K. Cummings (Eds.) Physics Education Research Conference, AIP Conference Proceedings, 720 (pp. 113-116)
Utha, K., Subba, B. H., Mongar, B. B., Hopwood, N., & Pressick-Kilborn, K. (2021). Secondary school students’ perceptions and experiences of learning science and mathematics: the case of Bhutan. Asia Pacific Journal of Education. https://doi.org/10.1080/02188791.2021.1901652
Wang, H. Y., Duh, H. B. L., Li, N., Lin, T. J., & Tsai, C. C. (2014). An investigation of university students’ collaborative inquiry learning behaviors in an augmented reality simulation and a traditional simulation. Journal of Science Education and Technology, 23(5), 682–691. https://doi.org/10.1007/s10956-014-9494-8
Wozniak, P., Vauderwange, O., Curticapean, D., Javahiraly, N., & Israel, K. (2015). Perform light and optic experiments in Augmented Reality. Education and Training in Optics and Photonics: ETOP 2015, 9793, 97930H. https://doi.org/10.1117/12.2223069
Wulandari, S., Wibowo, F. C., & Astra, I. M. (2021). A review of research on the use of augmented reality in physics learning. Journal of Physics: Conference Series, 2019(1). https://doi.org/10.1088/1742-6596/2019/1/012058