ΠΡΟΩΘΗΣΗ ΕΠΙΣΤΗΜΟΛΟΓΙΚΩΝ ΠΤΥΧΩΝ ΤΗΣ ΦΥΣΗΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΗΣ ΦΥΣΗΣ ΤΗΣ ΕΠΙΣΤΗΜΟΝΙΚΗΣ ΔΙΕΡΕΥΝΗΣΗΣ, ΣΕ ΜΑΘΗΤΕΣ/ΤΡΙΕΣ ΤΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕΣΑ ΑΠΟ ΔΙΕΡΕΥΝΗΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΦΥΣΙΚΗΣ


Published: Sep 14, 2024
Keywords:
experimental inquiry-based learning nature of science nature of the scientific inquiry
Βασίλειος Γκάγκας
Ευριπίδης Χατζηκρανιώτης
Abstract

This paper describes the planning, implementation, and evaluation of a series of activities in the context of experimental inquiry based-learning, intending to promote epistemological knowledge in students of the first two upper high school classes, in the context of running a Physics Science Club. The epistemological knowledge was assessed through a qualitative questionnaire (VNoS). The findings of the research show that epistemological knowledge can be successfully promoted to students of the first two classes of upper high school and that there is a proficient to exemplary epistemological gain in the students' beliefs (Hake Gain) which is statistically significant.

Article Details
  • Section
  • PhDs
References
Afacan, Ö., & Çanli, D. S. (2019). Application of" The Nature of Science" Box Event Examples to Middle School Seventh Grade Students. International Journal of Evaluation and Research in Education, 8(2), 221-228. https://doi.org/10.11591/ijere.v8i2.18858
Aulia, E. V., Poedjiastoeti, S., & Agustini, R. (2018). The effectiveness of guided inquiry-based learning material on students’ science literacy skills. Journal of Physics: Conference Series, 947 (1). https://doi.org/10.1088/1742-6596/947/1/012049
Bell, R. L., Lederman, N. G., & Abd-El-Khalick, F. (1998). Implicit versus Explicit Nature of Science Instruction: An Explicit Response to Palmquist and Finley. Journal of Research in Science Teaching, 35(9), 1057-1061. https://doi.org/10.1002/(SICI)1098-2736(199811)35:9<1057::AID-TEA6>3.0.CO;2-C
Du, W. Y., Furman, B. J., & Mourtos, N. J. (2005). On the ability to design engineering experiments. In Proc. 8th UICEE Annual Conf. on Engng. Educ (pp. 331-336).
Hackling, M. W. (2005). Working scientifically: Implementing and assessing open investigation work in science. Western Australia Department of Education and Training.
Holbrook, J., & Rannikmae, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of science education, 29(11), 1347-1362.
Kapucu, M. S., Cakmakci, G., & Aydogdu, C. (2015). The influence of documentary films on 8th grade students’ views about nature of science. Educational Sciences: Theory & Practice, 15(3).
Khishfe, R., & Abd‐El‐Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders' views of nature of science. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 39(7), 551-578. https://doi.org/10.1002/tea.10036
Lederman, J.S. (2009). Teaching scientific inquiry: Exploration, directed, guided, and opened-ended levels. In National geographic science: Best practices and research base (pp. 8-20). Hapton-Brown Publishers. Ανακτήθηκε στις 20/4/2022, από: https://tinyurl.com/3kspbmz6
Lederman, J.S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014b). Meaningful assessment of learners' understandings about scientific inquiry - The views about scientific inquiry (VASI) questionnaire. Journal of research in science teaching, 51(1), 65-83. https://doi.org/10.1002/tea.21125
Lederman, N.G., Abd-El-Khalick, F., Bell, R.L., & Schwartz, R.S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521.
Lederman, N.G., Antink, A., & Bartos, S. (2014a). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, 23(2), 285-302. https://doi.org/10.1007/s11191-012-9503-3
Lubiano, M. L. D., & Magpantay, M. S. (2021). Enhanced 7E Instructional Model towards enriching science inquiry skills. International Journal of Research in Education and Science (IJRES), 7(3), 630-658. https://doi.org/10.46328/ijres.1963
Mesci, G. (2016). Preservice science teachers’ pedagogical content knowledge for nature of science and nature of scientific inquiry: A successful case study. hD dissertation, Western Michigan University, USA. http://scholarworks.wmich.edu/dissertations/1606
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academy Press. ISBN:978-0-309-21742-2.
Nurjanah, A., Utari, S., Ramalis, T. R., & Rusdiana, D. (2019). Apply model of teaching levels of inquiry for identifying experimental skills on solar system matter in the middle school. Journal of Physics: Conference Series, 1280(5), 1-5. https://doi.org/10.1088/1742-6596/1280/5/052022
Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A., Kamp, E. T., ... & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational research review, 14, 47-61. https://doi.org/10.1016/j.edurev.2015.02.003
Prima, E.C., Utari, S., Chandra, D.T., Hasanah, L., & Rusdiana, D. (2018). Heat and temperature experiment designs to support students’ conception on nature of science. Journal of Technology and Science Education, 8(4), 453-472. https://doi.org/10.3926/jotse.419
Roth, W. M., & Lee, S. (2004). Science education as/for participation in the community. Science education, 88(2), 263-291. https://doi.org/10.1002/sce.10113
Sampson, V., Hutner, T. L., FitzPatrick, D., LaMee, A., & Grooms, J. (2017). Argument-driven inquiry in physics: volume 1: mechanics lab investigations for grades 9-12. Arlington, Virginia: NSTA Press. ISBN 9781681403762 (e-book).
Shaakumeni, S. N. (2019). Exploring the factorial validity of the beliefs about nature of science questionnaire. Science Education International, 30(1), 38-44.
Stefanidou, C., & Skordoulis, C. (2017). Primary Student Teachers’ Understanding of Basic Ideas of Nature of Science: Laws, Theories and Models. Journal of Studies in Education, 7(1), 127-153. http://dx.doi.org/10.5296/jse.v7i1.10599
Tsai, C.C., Ho, H.N.J., Liang, J.C., & Lin, H.M. (2011). Scientific epistemic beliefs, conceptions of learning science and self-efficacy of learning science among high school students. Learning and Instruction, 21(6), 757-769. https://doi.org/10.1016/j.learninstruc.2011.05.002
Turiman, P., Omar, J., Daud, A. M., & Osman, K. (2012). Fostering the 21st century skills through scientific literacy and science process skills. Procedia-Social and Behavioral Sciences, 59, 110-116. https://doi.org/10.1016/j.sbspro.2012.09.253
Κουλαϊδής, Β. Αποστόλου, Α. & Καμπουράκης, Κ. (2008) (επιμ.). H Φύση των Επιστημών Διδακτικές Προσεγγίσεις. Βάρη, Αθήνα: Child Services. ISBN: 978-960-98209-0-5
Στεφανίδου, Κ. (2013). Ο ρόλος της ιστορίας και φιλοσοφίας των φυσικών επιστημών στη διδασκαλία των φυσικών επιστημών: διαδικασίες διδασκαλίας και μάθησης της φύσης της επιστήμης: νόμοι-μοντέλα-θεωρίες-μέσα από την ιστορία του ηλεκτρισμού (Διδακτορική διατριβή, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών (ΕΚΠΑ). Τμήμα Παιδαγωγικό Δημοτικής Εκπαίδευσης. Τομέας Φυσικών Επιστημών, Τεχνολογίας και Περιβάλλοντος.
Χατζηκρανιώτης Ε., Μολοχίδης Α. (2017). Εισάγοντας μαθητές Γυμνασίου σε πειραματικές διερευνητικές δραστηριότητες. Στο Σταύρου Δ., Μιχαηλίδη Α. & Κοκολάκη Α. (2017). Πρακτικά 10ου Πανελληνίου Συνεδρίου Διδακτικής των Φυσικών Επιστημών και Νέων Τεχνολογιών στην Εκπαίδευση - Γεφυρώνοντας το Χάσμα μεταξύ Φυσικών Επιστημών, Κοινωνίας και Εκπαιδευτικής Πράξης, 7-9 Απριλίου 2017 (σσ. 689-697). Ρέθυμνο: Εκδόσεις GUTENBERG. ISBN:978-960-86978-3-6