Ιδέες και διαδικασίες μάθησης Φοιτητών Τμημάτων Φυσικής και Χημείας πάνω στις εξαρτώμενες από το μέγεθος οπτικές ιδιότητες υλικών στην νανοκλίμακα
Abstract
The state-of-the-art field of Nanotechnology has a well-documented educational value. Herein a novel teaching sequence is implemented based on Model of Educational Reconstruction regarding size-dependent properties at the nanoscale with the goal to identify the chemistry and physics undergraduate students’ ideas and learning process. This sequence was constructed as a Teaching Experiment and yielded a series of initial alternative ideas as well as a possible learning process for overcoming them through the introduction of quantum confinement.
Article Details
- Section
- PhDs
References
Bhushan, B., Luo,D., Schricker, S., R., Sigmund, W. & Zauscher,S. (2014) Handbook of Nanomaterials, Berlin Heidelberg: Springer. ISBN: 978-3-642-31107-9
Biju, V., Itoh, T., Anas, A., Sujith, A., & Ishikawa, M. (2008). Semiconductor quantum dots and metal nanoparticles: Syntheses, optical properties, and biological applications. Analytical and Bioanalytical Chemistry, 391, 2469–2495. https://doi.org/10.1007/s00216-008-2185-7
Sakhnini,S. & Blonder, R. (2015) Essential concepts of nanoscale science and technology for high school students based on a Delphi study by the expert community. International Journal of Science, 37(11), 1699-1738. https://doi.org/10.1080/09500693.2015.1035687
Schank, P., Wise, A., Stanford, T., & Rosenquist, A. (2009). Can high school students learn nanoscience? An evaluation of the viability and impact of the NanoSense curriculum [Technical Report]. California, US: SRI International.
Stevens, S. Y., Sutherland, L. M., & Krajcik, J. S. (2009). The big ideas of nanoscale science and engineering: A guidebook for secondary teachers. Virginia (USA): National Science Teachers Association. ISBN: 978-1935155072
Stevens, S. Y, Delgado, D, Krajcik J.S. (2010) Developing a Hypothetical Multi-Dimensional Learning Progression for the Nature of Matter, Journal of Research in Science Teaching, 47(6), 687-715. https://doi.org/10.1002/tea.20324
Talanquer, V (2018) Progression in reasoning about structure-property relationships. Chemistry Education Research and Practice,19, 998-1009. https://doi.org/10.1039/C7RP00187H
Mayring P., (2015). Qualitative Content Analysis: Theoretical Background and Procedures. Ιn A. Bikner-Ahsbahs, C. Knipping & N. Presmeg (Eds.), Approaches to Qualitative Research in Mathematics Education (pp. 365-380), Dordrecht: Springer. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-395173
Méheut, M., & Psillos, D. (2004). Teaching–learning sequences: Aims and tools for science education research. International Journal of Science Education, 26(5), 515–535. https://doi.org/10.1080/09500690310001614762
Metaxas, I., Michailidi E., Stavrou, D. & Pavlidis, I., V. (2021). Educational reconstruction of size-dependent properties in nanotechnology for teaching in tertiary education, Chemistry Teacher International, 3(4), 413-422. https://doi.org/10.1515/cti-2021-0011
Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012) The model of educational reconstruction – A framework for improving teaching and learning science. In Science Education Research and Practice in Europe (pp. 13-37). Rotterdam: Sense Publishers. DOI: 10.1007/978-94-6091-900-8_2
Duschl, R., Maeng, S. & Sezen, A. (2011) Learning progression and teaching sequences: a review and analysis, Studies in Science Education, 47(2), 123-182. https://doi.org/10.1080/03057267.2011.604476
Healy, N. (2009) Why nano education? Journal of Nano Education, 1(1), 6-7 DOI:10.1166/jne.2009.004
Hingant, B. & Albe, V. (2010). Nanoscience and nanotechnologies leasrning and teaching in secondary education: a review of literature, Studies in Science Education, 46(2), 121-152. https://doi.org/10.1080/03057267.2010.504543
Jackman, J. A., Cho, D.-J., Jackman, J. S., Sweeney, A. E., & Cho, N.-J. (2020). Training leaders in nanotechnology. In Sattler, K. D. (Ed.), 21st Century nanoscience – A handbook: Public policy, education, and global trends (pp. 5-1–5-12). Boca Raton: CRC Press. ISBN: 9780429351631
Jenkins, J., Wax, T., J. & Zhao, J. (2017). Seed-mediated synthesis of gold nanoparticles of controlled sizes to demonstrate the impact of size on optical properties, Journal of Chemical Education, 94(8), 1090-1093. https://doi.org/10.1021/acs.jchemed.6b00941
Komorek M. & Duit R., (2004). The teaching experiment as a powerful method to develop and evaluate teaching and learning sequences in the domain of non-linear systems. International Journal of Science Education, 26, 619-633. DOI:10.1080/09500690310001614717
Kong, Y., Rodgers, K. J., Diefes-Dux, H., Douglas, K. A. & Madhavan, K. (2014) First-year engineering students' communication of nanotechnology size & scale in a design challenge. Proceedings of the 121st ASEE Annual Conference and Exposition. Indianapolis: American Society for Engineering Education. https://doi.org/10.1002/jee.20172