Reconstruction of radioactivity in semi-closed ocean systems using nuclear methods: a case study at North Cretan basin


Published: Jun 12, 2025
Keywords:
environmental radioactivity sedimentation rate gamma-spectrometry radionuclides HPGe
Zoi Maniati
Christos Tsabaris
Effrosyni Androulakaki
Stylianos Alexakis
Kiki Manta
Dionisis Patiris
Michael Kokkoris
Abstract

A sediment core was collected using a box corer from the North Cretan deep basin, at a depth of 1500 m, in order to determine the rate of sedimentation, to measure the levels of radioactivity of 137Cs and to investigate potential past geophysical events. The activity concentrations of the radionuclides were measured in the laboratory by the gamma spectroscopy method using a High-Purity Germanium (HPGe) detector at the Marine Environmental Laboratory of HCMR. The sedimentation rate was calculated applying radio-dating models by both the 210Pb and the 137Cs methods. The low sedimentation in the studied area exhibited folded peaks of the Cs deposition due to Chernobyl and nuclear tests. The results of the measurements showed that Cs appeared in the first 4 cm of the sediment core and its activity concentration ranged from (6.66 ± 0.62) Bq kg-1 to (1.39 ± 0.28) Bq kg-1, with a value of (6.66 ± 0.62) Bq kg-1 on the surface sample. The sedimentation rate was estimated at (0.037 ± 0.007) cm y-1 with the 210Pb radiochronology model. Additionally, it was observed the signature of the volcanic eruption that took place close to Santorini Island (almost 300 years ago) was evident at around 10.5-11.0 cm. The deep basin of the North Cretan Sea, although it does not interact with the terrestrial environment, was affected by anthropogenic pressures, as well as by the footprint of natural hazards.

Article Details
  • Section
  • Oral contributions
References
J. Liu, et al., J. Hazard. Mater. 487, 137101 (2025); doi: org/10.1016/j.jhazmat.2025.137101 DOI: https://doi.org/10.1016/j.jhazmat.2025.137101
G. Kousidou et al., HNPS Adv. Nucl. Phys. 31, 96 (2025); doi: org/10.12681/hnpsanp.7999 DOI: https://doi.org/10.12681/hnpsanp.7999
F.K. Pappa, et. al., Environ. Sci. Pollut. Res. 25, 30084 (2018); doi: 10.1007/s11356-018-2984-0 DOI: https://doi.org/10.1007/s11356-018-2984-0
F.K. Pappa, et al., Appl. Radiat. Isot. 145, 198 (2019); doi: 10.1016/j.apradiso.2018.12.021 DOI: https://doi.org/10.1016/j.apradiso.2018.12.021
A. Vinković, et al., JSS 22, 2912 (2022); doi: 10.1007/s11368-022-03282-0. DOI: https://doi.org/10.1007/s11368-022-03282-0
G. Eleftheriou, et al., HNPS Adv. Nucl. Phys. 21, 156 (2019); doi: 10.12681/hnps.2023 DOI: https://doi.org/10.12681/hnps.2023
C. Tsabaris, et al., J. Env. Rad. 144, 1 (2015); doi: 10.1016/j.jenvrad.2015.02.009 DOI: https://doi.org/10.1016/j.jenvrad.2015.02.009
C. Tsabaris, et al., JSS 24, 3938 (2024); doi: 10.1007/s11368-024-03907-6 DOI: https://doi.org/10.1007/s11368-024-03907-6
D. Kassis, et al., Ocean Dyn. 66, 11 (2016); doi: 10.1007/s10236-016-0987-2. DOI: https://doi.org/10.1007/s10236-016-0987-2
A. Katsigera, et al., GeoHazards 5, 816 (2024); doi: org/10.3390/geohazards503004. DOI: https://doi.org/10.3390/geohazards5030041
P. Nomikou, et al., Glob. Planet. Change 90–91, 135 (2012); doi: 10.1016/j.gloplacha.2012.01.001. DOI: https://doi.org/10.1016/j.gloplacha.2012.01.001
P. Nomikou, et al., ZfG 57, 029 (2013); doi: 10.1127/0372-8854/2013/S-00142. DOI: https://doi.org/10.1127/0372-8854/2013/S-00142
International Atomic Energy Agency, Guidelines on Soil and Vegetation Sampling for Radiological Monitoring, Technical Reports Series No. 486 (2019); ISBN: 978-92-0-102218-9.
C.A. Kalfas, et al., Nucl. Instrum. Meth. Phys. Res. A 830, 265 (2016); doi: 10.1016/j.nima.2016.05.098. DOI: https://doi.org/10.1016/j.nima.2016.05.098
M. Alexander, J. Simon, M. Khanh Pham, Certified Reference Material IAEA-385: Natural and artificial radionuclides in sediment from the Irish Sea, International Atomic Energy Agency Department of Nuclear Sciences and Applications, Environment Laboratories, (2019); https://nucleus.iaea.org/sites/AnalyticalReferenceMaterials/Shared%20Documents/ReferenceMaterials/Radionuclides/IAEA-385/RS_IAEA-385_V5.3.pdf
M. K. Pham, J. A. Sanchez-Cabeza, P. P. Povinec, Report on the worldwide intercomparison exercise: IAEA-385 radionuclides in Irish Sea sediment, International Atomic Energy Agency, Marine Environment Laboratory, (2005); https://nucleus.iaea.org/sites/AnalyticalReferenceMaterials/Shared%20Documents/ReferenceMaterials/Radionuclides/IAEA-385/IAEA_AL_151.pdf
T. Vidmar, Nucl. Instrum. Meth. Phys. Res. A 550, 603 (2005); doi: 10.1016/j.nima.2005.05.055 DOI: https://doi.org/10.1016/j.nima.2005.05.055
G. Eleftheriou, et al., Appl. Radiat. Isot. 206, 111234 (2024); doi: 10.1016/j.apradiso.2024.111234 DOI: https://doi.org/10.1016/j.apradiso.2024.111234
J.A. Sanchez-Cabeza, A.C. Ruiz-Fernández, Geochim. Cosmochim. Acta 82, 183 (2012); doi: 10.1016/j.gca.2010.12.024 DOI: https://doi.org/10.1016/j.gca.2010.12.024
M. Klaver, et al., Geochem. geophys. 17, 3254 (2016); doi: 10.1002/2016GC006398 DOI: https://doi.org/10.1002/2016GC006398
N. Iversen, B. B. Jørgensen, Geochim. Cosmochim. Acta 57, 571 (1993); doi: 10.1016/0016-7037(93)90368-7 DOI: https://doi.org/10.1016/0016-7037(93)90368-7