Fast-timing measurements of nuclear lifetimes in the Z ~ 50 region


Published: Jul 31, 2024
Keywords:
115-120Te 106,108Pd nuclear lifetimes FEST B(E2) transition strengths
Polytimos Vasileiou
http://orcid.org/0000-0003-1446-8619
Theo J. Mertzimekis
https://orcid.org/0000-0001-9191-7903
Aikaterini Zyriliou
https://orcid.org/0000-0003-2498-6014
Achment Chalil
Margarita Efstathiou
https://orcid.org/0009-0006-1292-4974
Angelos Karadimas
https://orcid.org/0009-0000-9337-9811
Pavlos Koseoglou
Dennis Bonatsos
https://orcid.org/0000-0003-1728-0910
Andriana Martinou
https://orcid.org/0000-0003-3140-2136
Spyridon K. Peroulis
Nikolay Minkov
Nicolae Mărginean
Constantin Mihai
Cristian Costache
Razvan Lică
Radu E. Mihai
Ruxandra Borcea
Andrei Turturica
Nicoleta Florea
Abstract

The neutron–deficient region around the Z=50 major shell closure provides fertile grounds for nuclear structure studies, as single–particle degrees of freedom compete with collective phenomena to form several of the observed spectroscopic properties. This work reports on the progress and the preliminary results of a recent experiment performed at IFIN–HH, in Magurele, Romania, focused around the measurement of lifetimes of excited states in neutron–deficient Te isotopes, by means of the Fast Electronic Scintillation Timing (FEST, or fast–timing) technique. A 11B beam of Elab = 35 MeV impinging on a 5 mg/cm2 natAg target was used to populate excited states in 115−120Te. The γ rays de-exciting these levels were detected by the ROSPHERE array, in its mixed 15 HPGe + 10 LaBr3(Ce) detector configuration. Additionally, the SORCERER particle detector array was coupled to ROSPHERE, enabling the study of p-γ and p-γ-γ coincident events. The combination of experimental findings and theoretical predictions from several models, including the newly developed proxy-SU(3), is anticipated to offer valuable insights into the dynamic shape evolution of the investigated isotopes.

Article Details
  • Section
  • Oral contributions
References
D. Bonatsos et al., Atoms 11, 117 (2023); doi: 10.3390/atoms11090117
Nudat3, National Nuclear Data Center; url: https://www.nndc.bnl.gov/nudat3/
N. Margineǎn et al., Eur. Phys. J. A 46, 329 (2010); doi: 10.1140/epja/i2010-11052-7
D. Bucurescu et al., NIM A 837, 1 (2016); doi: 10.1016/j.nima.2016.08.052
T. Beck et al., NIM A 951, 163090 (2020); doi: 10.1016/j.nima.2019.163090
J. Wiederhold et al., Phys. Rev. C 99, 024316 (2019); doi: 10.1103/PhysRevC.99.024316
A. Turturicǎ et al., Phys. Rev. C 103, 044306 (2021); doi: 10.1103/PhysRevC.103.044306
Z. Bay, Phys. Rev. 77, 419 (1950); doi: 10.1103/PhysRev.77.419
B. Pritychenko et al., At. Data Nucl. Data Tables 107, 1-139 (2016); doi: 10.1016/j.adt.2015.10.001
M. Efstathiou et al., HNPS Adv. Nucl. Phys. 30, 51 (2024); doi: 10.12681/hnpsanp.6091
M. Efstathiou et al., in preparation
V. Theodoropoulos et al., HNPS Adv. Nucl. Phys. 30, 246 (2024); doi: 10.12681/hnpsanp.6178
A. Martinou et al., Eur. Phys. J. A 57, 84 (2021); doi: 10.1140/epja/s10050-021-00396-w
D. Bonatsos et al., Symmetry 15, 169 (2023); doi: 10.3390/sym15010169
D. Bonatsos et al., J. Phys. G 50, 075105 (2023); doi: 10.1088/1361-6471/acd70b