Covariant density functional description of shape phase transitions and shape coexistence in heavy nuclei


Published: Jul 31, 2024
Keywords:
Covariant density functional theory shape coexistence shape phase transitions collective Hamiltonian
Vaia Prassa
Konstantinos Karakatsanis
Abstract

The phenomena of shape phase transitions and shape coexistence in even-even heavy nuclei are analysed within the covariant density functional framework. Spectroscopic observables that characterize low-lying collective excitations associated with order parameters are computed using the corresponding generalized microscopic collective Hamiltonians with deformations as dynamical collective coordinates. The parameters of the Hamiltonians are determined by relativistic Hartree-Bogoliubov calculations based on the energy density functional DD-PC1, and a finite-range pairing interaction.

Article Details
  • Section
  • Oral contributions
References
K. Heyde, P. Van Isacker, M. Waroquier, J.L. Wood, and R.A. Meyer, Phys. Rep. 102, 291 (1983)
J.L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. Van Duppen, Phys. Rep. 215, 101 (1992)
A.N. Andreyev, M. Huyse, P. Van Duppen, et al., Nature (London) 405, 430 (2000)
R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27, R109 (2001)
T. Grahn, A et al., Nucl. Phys. A 801, 83 (2008)
K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)
P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155 (2010)
M. Bender, Heenen P-H and Reinhard P-G 2003 Rev. Mod. Phys. 75 121
D. Vretenar, A.V. Afanasjev, G.A. Lalazissis and P. Ring, Phys. Rep. 409 101 (2005)
V. Prassa, EPJ A 58, 183 (2022)
J. Bonn et al, Phys. Lett. B 38, 308 (1972)
N. Rud et al, Phys. Rev. Lett. 31, 1421 (1973)
D. Proetel, R.M. Diamond, and F.S. Stephens, Phys. Lett. B 48, 102 (1974)
J.H. Hamilton, et al., Phys. Rev. Lett. 35, 562 (1975)
J.D. Cole et al., Phys. Rev. Lett. 37, 1185 (1976)
G.D. Dracoulis, Phys. Scr. 2000, 54 (2000)
N. Bree, et al, Phys. Rev. Lett. 112, 162701 (2014)
L.P. Gaffney, M. Hackstein, R.D. Page, et al., Phys. Rev. C 89, 024307 (2014)
R. Julin et al, J. Phys. G 43, 024004 (2016)
B.A. Marsh, T. Day Goodacre et al., Nat. Phys. 14, 1163 (2018)
A. Esmaylzadeh et. al., Phys. Rev. C 98, 044306 (2018)
S. Sels, T. Day Goodacre, B.A. Marsh et al., Phys.Rev. C 99, 044306 (2019)
B. Olaizola et. al., Phys. Rev. C 100, 024301 (2019)
C. Müller-Gatermann et al., Phys. Rev. C 99, 054325 (2019)
J. Elseviers, A.N. Andreyev, et al., Phys. Rev. C 84, 034307 (2011)
T. Nikšic, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008)
Y. Tian, Z.Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009)
Z.P. Li, T. Nikšic, D. Vretenar, P. Ring, and J. Meng, Phys. Rev. C 81, 064321 (2010)
T. Nikšic, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011)
D. Inglis, Phys. Rev. 103, 1786 (1956)
S. Beliaev, Nucl. Phys. 24, 322 (1961)
M. Girod and B. Grammaticos, Nucl. Phys. A 330, 40 (1979)
Z.P. Li, B.Y. Song, J.M. Yao, D. Vretenar, J. Meng, Physics Letters B 726 866869 (2013)
S.Y. Xia, H. Tao, Y. Lu, Z.P. Li, Niksic, and D. Vretenar, Phys. Rev. C 96, 054303 (2017)
Z. Xu and Z.-P. Li, Chin. Phys. C 41, 124107 (2017)
R. Budaca, A.I. Budaca, Phys. Lett. B 759, 349 (2016)