Constraints on color-flavor locked quark matter in view of the HESS J1731-347 measurement


Δημοσιευμένα: Ιουν 2, 2025
Konstantinos Kourmpetis
https://orcid.org/0009-0003-4730-1513
Pavlos Laskos-Patkos
Charalampos Moustakidis
Περίληψη
Astrophysical observations play a crucial role in understanding the processes within compact stars. A recent study measured the central object in the HESS J1731-347 supernova remnant (SNR), estimating its mass at Μ=0.77 (+0.20, -0.17)Μο and radius at R = 10.40 (+0.86,-0.78)Mo km, identifying it as the lightest neutron star ever observed. Conventional models suggest neutron stars form with a minimum gravitational mass of approximately 1.17Mo, raising the question of whether this object is a typical neutron star or possibly an "exotic" star. To investigate, we utilize the Color-Flavor Locked (CFL) equation of state (EoS), integrating data from the HESS J1731-347 measurement with pulsar observations and gravitational wave detections. Additionally, we construct hybrid EoS by combining the MDI-APR1 (hadronic) and CFL (quark) EoS, introducing a phase transition through Maxwell construction. Our findings reveal that absolutely stable CFL quark matter effectively explains all observed measurements, including the central object of HESS J1731-347, whereas hybrid models incorporating the CFL MIT Bag model cannot account for the masses of the most massive observed pulsars.
Λεπτομέρειες άρθρου
  • Ενότητα
  • Oral contributions
Αναφορές
N. K. Glendenning, Compact Stars, Springer, 1997; doi: 10.1007/978-1-4684-0491-3. DOI: https://doi.org/10.1007/978-1-4684-0491-3
J. Schaffner-Bielich, Compact Star Physics Cambridge University Press, 2020; doi: 10.1017/9781316848357. DOI: https://doi.org/10.1017/9781316848357
F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, England, 1999; doi: 10.1201/9780203741719. DOI: https://doi.org/10.1201/9780203741719
P. Haensel, et al., Neutron Stars 1: Equation of State and Structure, New York, 2007; doi: 10.1007/978-0-387-47301-7. DOI: https://doi.org/10.1007/978-0-387-47301-7
V. Doroshenko, et al., Nat. Astron. 6, 1444 (2023); doi: 10.1038/s41550-022-01800-1. DOI: https://doi.org/10.1038/s41550-022-01800-1
G.G. Pavlov, et al., Proc. of the 270-th Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, W. Becker, H. Lesch and J. Truemper (eds.) (2002), MPE Reports 278, p. 283; doi: 10.48550/arXiv.astro-ph/0206024.
G.G. Pavlov, et al, edited by Camilo, F., Gaensler, B.M. (eds.), Young Neutron Stars and Their Environments, vol. 218, p. 239 (2004).
A. De Luca, J. Phys.: Conf. Ser. 932, 012006 (2017); doi: 10.1088/1742-6596/932/1/012006. DOI: https://doi.org/10.1088/1742-6596/932/1/012006
Y. Suwa, et al., Monthly Notices of the Royal Astronomical Society 481, 3305 (2018); doi: 10.1093/mnras/sty2460. DOI: https://doi.org/10.1093/mnras/sty2460
L. Brodie and A. Haber, Phys. Rev. C 108, 025806 (2023); doi: 10.1103/PhysRevC.108.025806. DOI: https://doi.org/10.1103/PhysRevC.108.025806
F. Di Clemente, et al., ApJ 967, 159 (2024); doi: 10.3847/1538-4357/ad445b. DOI: https://doi.org/10.3847/1538-4357/ad445b
J.E. Horvath, et al., A&A 672, L11 (2023); doi: 10.1051/0004-6361/202345885. DOI: https://doi.org/10.1051/0004-6361/202345885
C. Alcock, et al., ApJ 310, 261 (1986); doi: 10.1086/164679. DOI: https://doi.org/10.1086/164679
C. Alcock and A. V. Olinto, Annual Review of Nuclear and Particle Science 38, 161 (1988); doi: 10.1146/annurev.ns.38.120188.001113. DOI: https://doi.org/10.1146/annurev.ns.38.120188.001113
P. Haensel, et al., A&A 160, 121 (1986).
J. Madsen, Lect. Notes Phys. 516, 162 (1999); doi: 10.1007/BFb0107314. DOI: https://doi.org/10.1007/BFb0107314
F. Weber, Prog.Part.Nucl.Phys. 54, 193 (2005); doi: 10.1016/j.ppnp.2004.07.001. DOI: https://doi.org/10.1016/j.ppnp.2004.07.001
E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984); doi: 10.1103/PhysRevD.30.2379. DOI: https://doi.org/10.1103/PhysRevD.30.2379
N. Itoh, Prog. Theor. Phys. 44, 291 (1970); doi: 10.1143/PTP.44.291. DOI: https://doi.org/10.1143/PTP.44.291
A.R. Bodmer, Phys. Rev. D 4, 1601 (1971); doi: 10.1103/PhysRevD.4.1601. DOI: https://doi.org/10.1103/PhysRevD.4.1601
E. Witten, Phys. Rev. D 30, 272 (1984); doi: 10.1103/PhysRevD.30.272. DOI: https://doi.org/10.1103/PhysRevD.30.272
H. Terazawa, J. Phys. Soc. Jpn. 58, 3555 (1989); doi: 10.1143/JPSJ.58.3555. DOI: https://doi.org/10.1143/JPSJ.58.3555
H. Terazawa, J. Phys. Soc. Jpn. 58, 4388 (1989); doi: 10.1143/JPSJ.58.4388. DOI: https://doi.org/10.1143/JPSJ.58.4388
Y. Bai and T.K. Chen, arXiv:2410.19678 (2024); doi: 10.48550/arXiv.2410.19678.
M. Alford, et al., Nucl. Phys. B 537, 443 (1999); doi: 10.1016/S0550-3213(98)00668-3. DOI: https://doi.org/10.1016/S0550-3213(98)00668-3
M.G. Alford, Annual Review of Nuclear and Particle Science 51, 131 (2001); doi: 10.1146/annurev.nucl.51.101701.132449. DOI: https://doi.org/10.1146/annurev.nucl.51.101701.132449
M.G. Alford, et al., Rev. Mod. Phys. 80, 1455 (2008); doi: 10.1103/RevModPhys.80.1455. DOI: https://doi.org/10.1103/RevModPhys.80.1455
G. Lugones and J. E. Horvath, Phys. Rev. D 66, 074017 (2002); doi: 10.1103/PhysRevD.66.074017. DOI: https://doi.org/10.1103/PhysRevD.66.074017
J. Bardeen, et al., Phys. Rev. 106, 162 (1957); doi: 10.1103/PhysRev.106.162. DOI: https://doi.org/10.1103/PhysRev.106.162
J. Bardeen, et al., Phys. Rev. 108, 1175 (1957); doi: 10.1103/PhysRev.108.1175. DOI: https://doi.org/10.1103/PhysRev.108.1175
P.T. Oikonomou and Ch. C. Moustakidis, Phys. Rev. D 108, 063010 (2023); doi: 10.1103/PhysRevD.108.063010 DOI: https://doi.org/10.1103/PhysRevD.108.063010
H. Gholami, et al., Phys. Rev. D 111, 103034 (2025); doi: 10.1103/PhysRevD.111.103034. DOI: https://doi.org/10.1103/PhysRevD.111.103034
M. Alford, et al., ApJ 629, 969 (2005); doi: 10.1086/430902. DOI: https://doi.org/10.1086/430902
G. Baym, et al., Rep. Prog. Phys. 81, 056902 (2018); doi: 10.1088/1361-6633/aaae14. DOI: https://doi.org/10.1088/1361-6633/aaae14
M.G. Alford et al., Phys. Rev. D 88, 083013 (2013); doi: 10.1103/PhysRevD.88.083013. DOI: https://doi.org/10.1103/PhysRevD.88.105017
J. E. Christian, et al., Eur. Phys. J. A 54, 28 (2018); doi: 10.1140/epja/i2018-12472-y. DOI: https://doi.org/10.1140/epja/i2018-12472-y
G. Montaña, et al., Phys. Rev. D 99, 103009 (2019); doi: 10.1103/PhysRevD.99.103009. DOI: https://doi.org/10.1103/PhysRevD.99.103009
P.S. Koliogiannis and Ch.C. Moustakidis, ApJ 912, 69 (2021); doi: 10.3847/1538-4357/abe542. DOI: https://doi.org/10.3847/1538-4357/abe542
V. Sagun, et al., ApJ 958, 49 (2023); doi: 10.3847/1538-4357/acfc9e. DOI: https://doi.org/10.3847/1538-4357/acfc9e
L. Tsaloukidis, et al., Phys. Rev. D 107, 023012 (2023); doi: 10.1103/PhysRevD.107.023012. DOI: https://doi.org/10.1103/PhysRevD.107.023012
M. Mariani, et al., Phys. Rev. D 110, 043026 (2024); doi: 10.1103/PhysRevD.110.043026. DOI: https://doi.org/10.1103/PhysRevD.110.043026
J.J. Li, et al., ApJ 967, 116 (2024); doi: 10.3847/1538-4357/ad4295. DOI: https://doi.org/10.3847/1538-4357/ad4295
P. Laskos-Patkos et al., Phys. Rev. D 109, 063017 (2024); doi: 10.1103/PhysRevD.109.063017. DOI: https://doi.org/10.1103/PhysRevD.109.063017
B. Gao, et al., Phys. Rev. C 109, 065807 (2024); doi: 10.1103/PhysRevC.109.065807. DOI: https://doi.org/10.1103/PhysRevD.109.089904
S. Tewari, et al., Phys. Rev. D 111, 103009 (2025); doi: 10.1103/PhysRevD.111.103009. DOI: https://doi.org/10.1103/PhysRevD.111.103009
X. F. Zhao, Chin. J. of Phys. 54, 839 (2016); doi: 10.1016/j.cjph.2016.08.009. DOI: https://doi.org/10.1016/j.cjph.2016.08.009
E. Fonseca et al., ApJL 915, L12 (2021); doi: 10.3847/2041-8213/ac03b8. DOI: https://doi.org/10.3847/2041-8213/ac03b8
W. R. Romani et al., ApJL 934, L17 (2022); doi: 10.3847/2041-8213/ac8007 DOI: https://doi.org/10.3847/2041-8213/ac8007
B. P. Abbott et al., Phys. Rev. Lett. 121, 161101 (2018); doi: 10.1103/PhysRevLett.121.161101. DOI: https://doi.org/10.1103/PhysRevLett.121.161101
K. Schwarzschild and K. Sitzungsber, Preuss. Akad. Wiss, 189 (1916).
A. Alho, et al., Phys. Rev. D 106, L041502 (2022); doi: 10.1103/PhysRevD.106.L041502. DOI: https://doi.org/10.1103/PhysRevD.106.L041502
Ya.B. Zel’dovich, Zh. Eksp. Teoret. Fiz. 41, 1609 (1961).
J.R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55, 374 (1939); doi: 10.1103/PhysRev.55.374. DOI: https://doi.org/10.1103/PhysRev.55.374
J. Piekarewicz, Acta Phys. Pol. B 50, 239 (2018); doi: 10.5506/APhysPolB.50.239. DOI: https://doi.org/10.5506/APhysPolB.50.239
K.Ch. Chatzisavvas, et al., Phys. Lett. A 373, 3901 (2009); doi: 10.1016/j.physleta.2009.08.042. DOI: https://doi.org/10.1016/j.physleta.2009.08.042
T. DeGrand et al., Phys. Rev. D 12, 2060 (1975); doi: 10.1103/PhysRevD.12.2060. DOI: https://doi.org/10.1103/PhysRevD.12.2060
C. Vásquez Flores and G. Lugones, Phys. Rev. C 95, 025808 (2017); doi: 10.1103/PhysRevC.95.025808 DOI: https://doi.org/10.1103/PhysRevC.95.025808
S.-H. Yang and C.-M. Pi, JCAP09, 052 (2024); doi: 10.1088/1475-7516/2024/09/052. DOI: https://doi.org/10.1088/1475-7516/2024/09/052
G. Baym, et al., Astrophys. J. 170, 299 (1971); doi: 10.1086/151216. DOI: https://doi.org/10.1086/151216