Supramassive dark objects with neutron star origin


Δημοσιευμένα: Ιουλ 31, 2024
Michael Vikiaris
Charalambos Moustakidis
Vlasios Petousis
Veselsky Martin
Περίληψη

Till today, the nature of dark matter remains elusive despite all our efforts. This missing matter 
of the universe has not been observed by the already operating dark matter direct-detection exper- 
iments, but we can infer its gravitational effects. Galaxies and clusters of galaxies are most likely 
to contain dark matter trapped to their gravitational field. This leads us to the natural assumption 
that compact objects might contain dark matter too. Among the compact objects exist in galaxies, 
neutron stars considered as natural laboratories, where theories can be tested, and observational 
data can be received. Thus, many models of dark matter they have proposed it’s presence in those 
stars. By employing the two fluid model, we discovered a stable area in the M-R diagram of a 
celestial formation consisting of neutron and dark matter that is substantial in size and vast in di- 
mensions. This formation spans hundreds of kilometers in diameter and possesses a mass equivalent 
to 100 or more times that of our sun. To elucidate, this entity resembles an enormous celestial body 
of dark matter, with a neutron star at its core. This implies that a supramassive stellar compact 
entity can exist without encountering any issues of stability and without undergoing a collapse into 
a black hole. In any case, the present theoretical prediction can, if combined with corresponding 
observations, shed light on the existence of dark matter and even more on its basic properties.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Oral contributions
Αναφορές
P. Haensel, A.Y. Potekhin, and D.G. Yakovlev, Springer-Verlag, New York, (2007)
D.E. Kaplan, M.A. Luty and K.M. Zurek, Phys. Rev. D 79, 115016 (2009)
B. Bertoni, A.E. Nelson and S. Reddy, Phys. Rev. D 88, 123505 (2013)
P. Routaray et al., Phys. Rev. D 107, 103039 (2023)
N. Rutherford et al., Phys. Rev. D 107, 103051 (2023)
M. Cermeno et al., Pub. Astron. Soc. Aust. 34, e043 (2017)
S. Bhattacharya et al., Phys. Rev. Lett. 131, 091401 (2023)
Maxim Yu. Khlopov, A Vol. 28, No. 29, 1330042 (2013)
F. Sandin and P. Ciarcelluti, Astropart. Phys. 32, 278 (2009)
M. Vikiaris et al., arXiv:2312.07412v2 [astro-ph.HE]
B. Kain, Phys. Rev. D 103, 043009 (2021)
G. Narain et al., Phys. Rev. D 74, 063003 (2006)
P. Agnihotri, Jurgen Schaffner-Bielich, and Igor N. Mishustin, Phys. Rev. D 79, 084033 (2009)
A. Akmal, V.R. Pandharipande, and D. G. Ravenhall, Phys.Rev. C 58, 1804 (1998)
Y. Dengler, J.S. Bielich, and L. Tolos, Phys. Rev. D 105, 043013 (2022)
M.I. Gresham and K.M. Zurek, Phys. Rev. D 99, 083008 (2019)
A. Bauswein et al., Phys. Rev. D 107, 083002 (2023)
R. Abbott, Astrophys. J. Lett. 896, L44 (2020)