Covariant density functional description of shape phase transitions and shape coexistence in heavy nuclei
Περίληψη
The phenomena of shape phase transitions and shape coexistence in even-even heavy nuclei are analysed within the covariant density functional framework. Spectroscopic observables that characterize low-lying collective excitations associated with order parameters are computed using the corresponding generalized microscopic collective Hamiltonians with deformations as dynamical collective coordinates. The parameters of the Hamiltonians are determined by relativistic Hartree-Bogoliubov calculations based on the energy density functional DD-PC1, and a finite-range pairing interaction.
Λεπτομέρειες άρθρου
- Πώς να δημιουργήσετε Αναφορές
-
Prassa, V., & Karakatsanis, K. (2024). Covariant density functional description of shape phase transitions and shape coexistence in heavy nuclei. Annual Symposium of the Hellenic Nuclear Physics Society, 30, 75–80. https://doi.org/10.12681/hnpsanp.6284
- Τεύχος
- Τόμ. 30 (2024): HNPS2023
- Ενότητα
- Oral contributions

Αυτή η εργασία είναι αδειοδοτημένη υπό το CC Αναφορά Δημιουργού – Μη Εμπορική Χρήση – Όχι Παράγωγα Έργα 4.0 4.0.
Αναφορές
K. Heyde, P. Van Isacker, M. Waroquier, J.L. Wood, and R.A. Meyer, Phys. Rep. 102, 291 (1983)
J.L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. Van Duppen, Phys. Rep. 215, 101 (1992)
A.N. Andreyev, M. Huyse, P. Van Duppen, et al., Nature (London) 405, 430 (2000)
R. Julin, K. Helariutta, and M. Muikku, J. Phys. G 27, R109 (2001)
T. Grahn, A et al., Nucl. Phys. A 801, 83 (2008)
K. Heyde and J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011)
P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155 (2010)
M. Bender, Heenen P-H and Reinhard P-G 2003 Rev. Mod. Phys. 75 121
D. Vretenar, A.V. Afanasjev, G.A. Lalazissis and P. Ring, Phys. Rep. 409 101 (2005)
V. Prassa, EPJ A 58, 183 (2022)
J. Bonn et al, Phys. Lett. B 38, 308 (1972)
N. Rud et al, Phys. Rev. Lett. 31, 1421 (1973)
D. Proetel, R.M. Diamond, and F.S. Stephens, Phys. Lett. B 48, 102 (1974)
J.H. Hamilton, et al., Phys. Rev. Lett. 35, 562 (1975)
J.D. Cole et al., Phys. Rev. Lett. 37, 1185 (1976)
G.D. Dracoulis, Phys. Scr. 2000, 54 (2000)
N. Bree, et al, Phys. Rev. Lett. 112, 162701 (2014)
L.P. Gaffney, M. Hackstein, R.D. Page, et al., Phys. Rev. C 89, 024307 (2014)
R. Julin et al, J. Phys. G 43, 024004 (2016)
B.A. Marsh, T. Day Goodacre et al., Nat. Phys. 14, 1163 (2018)
A. Esmaylzadeh et. al., Phys. Rev. C 98, 044306 (2018)
S. Sels, T. Day Goodacre, B.A. Marsh et al., Phys.Rev. C 99, 044306 (2019)
B. Olaizola et. al., Phys. Rev. C 100, 024301 (2019)
C. Müller-Gatermann et al., Phys. Rev. C 99, 054325 (2019)
J. Elseviers, A.N. Andreyev, et al., Phys. Rev. C 84, 034307 (2011)
T. Nikšic, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008)
Y. Tian, Z.Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009)
Z.P. Li, T. Nikšic, D. Vretenar, P. Ring, and J. Meng, Phys. Rev. C 81, 064321 (2010)
T. Nikšic, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011)
D. Inglis, Phys. Rev. 103, 1786 (1956)
S. Beliaev, Nucl. Phys. 24, 322 (1961)
M. Girod and B. Grammaticos, Nucl. Phys. A 330, 40 (1979)
Z.P. Li, B.Y. Song, J.M. Yao, D. Vretenar, J. Meng, Physics Letters B 726 866869 (2013)
S.Y. Xia, H. Tao, Y. Lu, Z.P. Li, Niksic, and D. Vretenar, Phys. Rev. C 96, 054303 (2017)
Z. Xu and Z.-P. Li, Chin. Phys. C 41, 124107 (2017)
R. Budaca, A.I. Budaca, Phys. Lett. B 759, 349 (2016)