| More

Semantic Representation and Internet of Things in Cultural Heritage Preventive Conservation

Views: 154 Downloads: 117
Konstantinos Michalakis, Efthymia Moraitou, John Aliprantis, George Caridakis
Konstantinos Michalakis, Efthymia Moraitou, John Aliprantis, George Caridakis

Abstract


Preservation of Cultural Heritage (CH) collections in the best possible condition for the longest time possible is a crucial part of CH Institutions activity, since it ensures artefacts’ effective function in perpetuity. In this context, preservation processes that do not include any physical interaction with an object or collection can be regarded as preventive conservation. Preventive conservation measures and activities include among others the monitoring and management of environmental factors, in order to reduce potential risks of collections condition. The advent of the Internet of Things (IoT) can help towards this goal by automating the collection of data through sensors deployed in the cultural space and providing available services based on the IoT ecosystem. IoT technologies can facilitate the preventive conservation of tangible CH by exploiting streaming data produced by networks of sensors that keep track of changes in environmental parameters of a particular museum, in order to monitor the condition of its collections. Moreover, Semantic Web (SW) technologies could increase the efficiency of sensed data management by introducing reasoning mechanisms that will result in useful inferences regarding the combination of long-term or short-term records of sensed data and material decay. This work summarizes current state-of-the-art frameworks and monitoring systems that collect data from sensors in CH environments and the use of semantic web technologies for the efficient management of conservation and sensor data. Based on this study, it proposes an IoT infrastructure with semantic tools, which aims to enhance preventive conservation science.


Full Text:

PDF

References


Alsuhly, G., & Khattab, A. (2018). An IoT Monitoring and Control Platform for Museum Content Conservation. 2018 International Conference on Computer and Applications (ICCA), 196-201.

Asinelli, M. G., Serra, M. S., Marimòn, J. M., Espaulella, J. S. (2018). The smARTS_Museum_V1: An open hardware device for remote monitoring of Cultural Heritage indoor environments. HardwareX, 4, e00028.

Aste, N., Adhikari, R. S., Buzzetti, M., Della Torre, S., Del Pero, C., Leonforte, F. (2019). Microclimatic monitoring of the Duomo (Milan Cathedral): Risks-based analysis for the conservation of its cultural heritage. Building and Environment, 148, 240-257.

Ayala, I., Amor, M., Pinto, M., Fuentes, L., Gámez, N. (2014). iMuseumA: An Agent-Based Context-Aware Intelligent Museum System. Sensors 2014, 14, 21213-21246.

Barnaghi, P., Meissner, S., Presser, M., Moessner, K. (2009). Sense and Sens'ability: Semantic Data Modelling for Sensor Networks. Proceedings of the ICT Mobile Summit. 2009.

Barnaghi, P., Wang, W., Henson, C. A., Taylor, K. (2012). Semantics for the Internet of Things: Early Progress and Back to the Future. International Journal on Semantic Web and Information Systems, 8 (1), 1-21.

Bajaj, G., Agarwal, R., Singh, P., Georgantas, N., Issarny, V. (2017). A study of existing Ontologies in the IoT-domain. ArXiv, abs/1707.00112.

Bruseker, G., Carboni, N., & Guillem, A. (2017). Cultural Heritage Data Management: The Role of Formal Ontology and CIDOC CRM. In Heritage and Archaeology in the DigitalAge (pp. 93-131). Springer, Cham. 2017

Calder, M., Morris, R. A., & Peri, F. (2010). Machine reasoning about anomalous sensor data. Ecological Informatics, 5(1), 9-18.

Caple, C. (2012). Preventive conservation in museums. Oxford: Routledge. Leicester readers in museum studies.

Doerr, M., Hunter, J., & Lagoze, C. (2006). Towards a Core Ontology for Information Integration. Journal of Digital Information. 4. 2006.

Doerr, M., Kritsotaki, A., Rousakis, Y., Hiebel, G., Theodoridou, M., (2015). Definition of the CRMsci an extension of CIDOC-CRM to support scientific observation. Technical Report 1.2. 3. Heraklion: ICS-FORTH. 2015

Fernandez, S., Marsa-Maestre, I., Velasco, J., Alarcos, B. (2013). Ontology alignment architecture for semantic sensor web integration. Sensors, 13(9), 12581-12604.

García-Diego, F. J., & Zarzo, M. (2010). Microclimate monitoring by multivariate statistical control: The renaissance frescoes of the Cathedral of Valencia (Spain). Journal of cultural heritage, 11(3), 339-344.

Hunter, J., & Odat S. (2011). Building a Semantic Knowledge-Base for Painting Conservators. IEEE Seventh International Conference on e-Science Workshops (eScience2011), Stockholm, Sweden, 2011, 173-180

Klein, Levente, et al. (2017). Wireless Sensor Platform for Cultural Heritage Monitoring and Modeling System. Sensors 17.9: 1998.

LoRa, Lora Alliance (2019). Retreived from https://www.lora-alliance.org/

Moraru, A., & Mladenić, D. (2012). A framework for semantic enrichment of sensor data. Journal of computing and information technology, 20(3), 167-173.

Moraitou, E., & Kavakli, E. (2018). Knowledge Management Using Ontology on the Domain of Artworks Conservation. Digital Cultural Heritage (pp. 50-62). Springer, Cham. 2018.

Moraitou, E., Aliprantis, J., Christodoulou, Y., Teneketzis, A., Caridakis, G. (2019). Semantic Bridging of Cultural Heritage Disciplines and Tasks. Heritage. 2. 611-630.

MQTT, MQ Telemetry Transport (2017). Retrieved from http://mqtt.org/

Niang, C., Marinica, C., Markhoff, B., Leboucher, E., Malavergne, O., Bouiller, L., Laissus, F., (2017). Supporting Semantic Interoperability in Conservation-Restoration Domain: the PARCOURS project. ACM Journal on Computing and Cultural Heritage (JOCCH), 10(16):1-20 18. 2017

Peralta, L. R., de Brito, L. P. L., Gouveia, B. T., de Sousa, D. G., Alves, C. D. S. (2010). Automatic monitoring and control of museums environment based on wireless sensor networks. Electronic Journal of Structural Engineering.

Perles, A., Pérez-Marín, E., Mercado, R., Segrelles, J. D., Blanquer, I., Zarzo, M., Garcia-Diego, F. J. (2018). An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage. Future Generation Computer Systems, 81, 566-581.

Razzaque, M. A., Milojevic-Jevric, M., Palade, A., Clarke, S. (2015). Middleware for internet of things: a survey. IEEE Internet of things journal, 3(1), 70-95.

Stead, S., & Doerr, M. (2015). CRMinf: the Argumentation Model. An Extension of CIDOC-CRM to Support Argumentation. Available at: http://www.ics.forth.gr/isl/CRMext/CRMinf/docs/CRMinf-0.7.pdf

Valentini, F., Calcaterra, A., Antonaroli, S., Talamo, M. (2018). Smart Portable Devices Suitable for Cultural Heritage: A Review. Sensors, 18(8), 2434.

Visco, G., Plattner, S. H., Fortini, P., Sammartino, M. (2017). A multivariate approach for a comparison of big data matrices. Case study: Thermo-hygrometric monitoring inside the Carcer Tullianum (Rome) in the absence and in the presence of visitors. Environmental Science and Pollution Research, 24(16), 13990-14004.

Wang, X., Zhang, X., & Li, M. (2015). A survey on semantic sensor web: sensor ontology, mapping and query. International Journal of u-and e-Service, Science and Technology, 8(10), 325-342.




DOI: http://dx.doi.org/10.12681/cicms.2765

Refbacks

  • There are currently no refbacks.