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Abstract 

Using in the Bohr Hamiltonian the approximations leading to the Bohr and Mot-

telson description of wobbling motion in even nuclei, a W(5) model for wobbling 

bands, coexisting with a X(5) ground state band, is obtained. Separation of vari

ables is achieved by assuming that the relevant potential has a sharp minimum at 

70, which is the only parameter entering in the spectra and B(E2) transition rates 

(up to overall scale factors). B(E2) transition rates exhibit the features expected in 

the wobbling case. 
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1 I n t r o d u c t i o n 

Nuclear wobbling motion [1] is expected to occur for triaxial nuclei at high 

angular momenta, when the angular momentum is aligned with the axis corre

sponding to the largest moment of inertia, a situation which classically corre

sponds to simple rotat ion without precession of the axes. Although wobbling 

motion was initially introduced for even nuclei [1], it has been seen experimen

tally up to now (and only recently) only in odd nuclei ( 1 6 3 Lu [2-4], 1 6 5 L u [5], 
1 6 7 L u [6]). Detailed theoretical works have been performed in t h e cranked shell 

model plus random phase approximation [7-9], as well as in t h e particle-rotor 

model [10,11], which naturally contain free parameters. 

In the present work we a t t e m p t a nearly parameter-free (up t o overall scale 

factors) description of wobbling in even nuclei, following the methods devel-



oped in the E(5) [12], X(5) [13], Y(5) [14], and Z(5) [15] models, which corre
spond to the U(5)-0(6), U(5)-SU(3), axial-triaxial, and prolate-oblate shape 
phase transitions respectively. Furthermore, the wobbling nucleus is assumed 
to possess a relatively rigid triaxial shape, as in Refs. [16-18], with the poten
tial having a sharp minimum at 7 = 70. 70 is the only free parameter entering 
in the problem. It turns out [19], however, that the results are changing very 
little with 70 within the region of interest. The path we follow is described 
here: 

1) We assume that the ground state band (gsb), which should be Yrast at 
low angular momentum L, is axial, characterized by 70 = 0. We then use for 
this purpose the X(5) gsb, which is indeed derived from the original Bohr 
Hamiltonian [20] after approximately separating variables for 7 = 0 [13]. 

2) We assume (as in Ref. [21]) that triaxiality should appear at higher L. 
Starting then from the original Bohr Hamiltonian, we approximately separate 
variables following the steps of Bohr and Mottelson [1] in the definitive de
scription of wobbling and keeping 7 close to 70. The resulting model, in which 
only 70 appears as a parameter, we call W(5). The spectrum of W(5) is mea
sured from the ground state of X(5) and normalized to the first excited state 
of the gsb of X(5), in order to be directly comparable to the X(5) spectrum. 

3) The nw = 0 band of W(5) (where nw is the number of wobbling phonons [1]) 
is found to cross the gsb of X(5) at certain L, depending (very weakly within 
the region of interest) on 70. Thus the nw = 0 band of W(5) becomes Yrast 
beyond some specific L. Bands with nw = 1, 2, . . . exist at higher energies. 

4) The nw = 0, 1, 2 bands of W(5) are connected by intraband and interband 
B(E2) transitions which exhibit the characteristic features expected in the 
case of wobbling [22]. 

In Sections 2 and 3 of the present work the /3-part and the 7-part of the W(5) 
spectrum are derived respectively, while the results are discussed in Section 4 
and plans for further work are presented in Section 5. 

2 The ß-part of the spectrum 

The original Bohr Hamiltonian [20] is H - Τ + V(ß, 7) with 

(1) 
25 β" <9/T dß + .0* s in3 7 0 7

 S m dl 4ß2 *=iA3 
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where β and 7 are the usual collective coordinates, Β is the mass parameter, Q^ 

(k = 1, 2, 3) are the components of angular momentum, and Ak — 1/ sin2(7 -

2π*/3). 

Introducing [13] reduced energies e = 2BE/h2 and reduced potentials w = 
2BV/H2, one aims at an approximate separation of variables by assuming 
that the reduced potential can be separated into two terms, one depending on 
3 and the other depending on 7, i.e. u(ß.y) = u(ß) + u("y). 

In the Χ(δ) model [13,23], approximate separation of variables is achieved by 
assuming that the potential u(j) has a minimum around 70 = 0 , guarantee
ing that K, the projection of angular momentum on the body-fixed i'-axis, 
is a good quantum number. Similarly, in the Z(5) model [15], approximate 
separation of variables is achieved by assuming that the potential «(7) has a 
minimum around 70 = π/6, guaranteeing [24] that a, the projection of angular 
momentum on the body-fixed x'-axis, is a good quantum number. 

The X(5) and Z(5) solutions, briefly mentioned above, are obtained for specific: 
values of 70 (0, π/6 respectively), and are valid for any value of the angular 
momentum L. A different approximate solution, which for brevity we are going 
to call W(5), can be obtained by following the steps of Bohr and Mottelson 
[1] for the description of wobbling motion. This solution will be obtained for 
a range of 70 values, but it will be valid only for large values of the angular 
momentum L, which is supposed to be aligned along the axis corresponding 
to the largest moment of inertia. 

Using the Ak {k — 1, 2, 3) appearing in Eq. (1), one sees that in the region 
0 < 7 < π/6 one has Ax < A2 < A3. Therefore the largest moment of inertia 
corresponds to k — 1. In what follows we are going to restrict ourselves to the 
0 < 7 < π/6 region. 

For large angular momenta L aligned along the k — 1 axis, following Bohr and 
Mottelson [1] one can see that the eigenvalues of the AiQ'l + A2Q\ + A3QI 
term in Eq. (1) take the form 

e(nw, L) = AXL(L + 1) + 2AXL (nw + - ) Aw, (2) 

with Aw = J(A2/Ai - l)(i43/^4i — 1), where nw is the number of the wobbling 
excitation quanta, for which the approximate (in the present case) relation 
nw — L — a (where a is the projection of angular momentum on the k — 1 
body-fixed axis, as before) holds. Since a « L and L is a good quantum 
number, a can be approximately treated as a good quantum number, too. 
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Using this result in the Schrödinger equation corresponding to the Hamiltonian 
of Eq. (1), one can separate it into two equations 

-ipfe + WM iL(L+1)+2L (n"+δ)A«)+u(/?) 
CL,UW {β) 

= ^ß^L,nw(ß), 

9 · * d a. ( \ sin 07-—l· u[j) 
(/32) sin 37 $7 Ö7 

^(7) = e7r/(7), 

(3) 

(4) 

where (β2) is the average of β2 over £(/?), and e = e/3 + e7. Here we assume, as 
in Refs. [16-18], that the potential u(j) has a deep minimum at 7 = 70, and 
that the variable 7 remains "frozen" at the value 70 in A\ and Aw, appearing 
in Eq. (3). 

The total wave function should have the form 

*^l,0i)=tL,nwWMl)VLM,M' (5) 

where 0; (i = 1, 2, 3) are the Euler angles, V(9i) denote Wigner functions 
of them, L and M are the eigenvalues of angular momentum and the eigen
values of the projection of angular momentum on the laboratory-fixed i-axis 
respectively, and a = L — nw. 

In the case in which u{ß) is an infinite well potential (u(ß) = 0 for β < ßw, 
u(ß) — 00 for β > ßw) one can use the transformation [13] ξ(β) = β3^2ξ(β), 
as well as the definitions [13] tß — Η , ζ = ßkß, in order to bring Eq. (3) into 
the form of a Bessel equation 

ά2ξ 1 di 

dz2 ζ dz e = o, (6) 

with 

ψϊιϊ{ί + 1) + 2AXL (nw + I) Aw + 9 
(7) 

Then the boundary condition £(ßw) — 0 determines the spectrum 

£ß;s,v — £ß;s,nw,L ~ \^s,u) » i^s,v 
>W 

(8) 
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and the eigenfunctions 

ξ,Λβ) = Unw,Uß) = 6,«,L(/?) = Cssß-Wj^ß), (9) 

where £S)t, is the sth zero of the Bessel function Jv(z), while the constants 
cSiV are determined from the normalization condition /0°° β4ξ^u(ß)dß = 1. The 
notation for the roots has been kept the same as in Ref. [13], while for the 
energies the notation ESÌTIWÌL will be used. The lowest band corresponds to 
s = 1, nw = 0 with L = 0, 2, 4, . . . , while the next bands are s — 1, nw — 1 
with L = 1, 3, 5, . . . , and s = 1, nw = 2 with L ~ 2, 4, fy . . . [24]. 

In the special case of 70 = π/6 one can easily see that A\ = 1, A2 = A3 = 4, 

Ay = 3. Then Eq. (7) takes the form f = \JL{L + 4) + 6n w L 4- 9, which is in 

agreement with the corresponding Z(5) expression [15], up to terms of order 

n 2 

3 The 7-part of the spectrum 

The 7-part of the spectrum is obtained from Eq. (4). We consider a harmonic 
oscillator potential having a sharp minimum at 7 = 70 (0 < 70 < π/6), i.e. 

u(l) = 2 C ( ^ - 7 o ) 2 = 2C72> 7 = 7 - 7 o · (10) 

The minimum is sharp as long as the constant c is taken to be sufficiently 
large. Considering only small oscillations around 70, and 

7 7 ( ^ = i K 7 ) e ~ 3 ( c o t 3 7 o W 2 , (H) 

Eq. (4) is brought into the form 

{~w+lc{ß2)f)m = (e"{ß2) - l^°t3^2) *w> w 
which is a simple harmonic oscillator equation. 

The total energy in the case of the W(5) model is then 

E(s, nw, L, nj) = E0 + A(xStV)2 + Bn^, (13) 

where n^ denotes the number of quanta of the above oscillator. 
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4 Results 

For low angular momentum the nucleus is expected to have 70 = 0. As angular 
momentum rises, at some point the nucleus will "jump" (as in Ref. [21]) to 
the large L limit corresponding to wobbling motion. As a consequence, the 
ground state band (gsb) of the nucleus should correspond to the gsb of X(5). 
The X(5) gsb should be the Yrast band up to some value of L, beyond which 
the nw = 0 wobbling band should become Yrast, while additional wobbling 
bands with nw = 1, 2, . . . should be seen further up in energy. 

The calculation of B(E2) transition rates resembles the one of the Ζ (5) model 
[15] and has been carried out in Ref. [19]. It is worth comparing the results to 
the main features expected to be exhibited by B(E2)s in wobbling bands [22]. 

1) In region 2 of the Lund convention, which corresponds to the present case, 

the interband (nw = 1) —> (nw — 0) transitions are expected to be strong for 

L —> L + 1 and weak for L —> L - 1 [7]. This is exactly the situation seen in 

Ref. [19]. 

2) The ratio 

B(E2)0Ut = B [ E 2 ; L I - > ( L + 1)Q] 

B(E2)in B[E2;L1^(L-2)iy
 [ ' 

where the notation Ln.w is used, is expected [22] to be of the order 0.2-0.3, 
i.e. much larger than what is expected for typical interband transitions. The 
(nw = 1) —> (nw = 0) transitions in Ref. [19] do exhibit this behaviour. 

3) The B(E2)0Ut = B[E2;Li —> (L + l)o] values are expected to go as 1/L 
and not as 1/L2 [22]. The results in Ref. [19] do exhibit this feature. 

5 Discussion 

In summary, a W(5) model describing the wobbling bands coexisting with 
a X(5) ground state band in even nuclei has been introduced. Separation of 
variables is achieved by assuming that the potential has a sharp minimum at 
7 = 7o· The model predictions for given value of 70 are parameter-free (up to 
overall scale factors). The W(5) predictions for intraband and interband B(E2) 
transition probabilities exhibit the features expected for wobbling bands. A 
characteristic feature of the model is that the nw = 0 wobbling band is not 
coinciding with the gsb, but with the superband crossing the gsb. 
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Concerning further work, the following comments can be made: 

1) It is clear that the W(5) model should be tested against experiment in 
nuclei of which the gsb at low L appears to be close to X(5). A summary of 
such nuclei in the rare earth region is given in Ref. [25]. It is indeed seen [19] 
that existing experimental spectra on l o 6 Dy [26,27] correspond very well to 
the nw = 0 and nw — 1 bands of the W(5) model for 70 = 20°, a value which 
has been found of interest [4] in the framework of "Ultimate Cranker" [28] 
calculations. 

2) The θ-equation [Eq. (3)j obtained above in the W(5) framework is also 
exactly soluble [29,30] for the Davidson potentials [31] u{3) = β2 + ßo/ß2, 
where ß0 is the position of the minimum of the potential. In analogy to earlier 
work in the E(5) and X(5) frameworks [32] it is expected that ß0 = 0 will 
correspond to a "wobbling vibrator", while 30 —> oo will lead to the original 
wobbling rotator of Ref. [1]. 

3) Using the variational procedure developed recently in the E(5) and X(5) 
frameworks [32], one should be able to prove that the W(5) model can be 
obtained from the Davidson potentials by maximizing the rate of change of 
various measures of collectivity with respect to the parameter ß0, thus proving 
that W(5) corresponds to the critical point symmetry of the transition from 
a "wobbling vibrator" to a wobbling rotator. 

Work in these directions is in progress. 
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