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Abstract 

A critical point symmetry for the prolate to oblate shape phase transition is intro
duced, starting from the Bohr Hamiltonian and approximately separating variables 
for 7 = 30°. Parameter-free (up to overall scale factors) predictions for spectra and 
B(E2) transition rates are found to be in good agreement with experimental data 
for 1 9 4 Pt, which is supposed to be located very close to the prolate to oblate critical 
point, as well as for its neighbours (1 9 2Pt, 1 9 6 Pt) . 

Key words: Z(5) model; Critical point symmetry; Shape phase transition; Prolate 
to oblate transition; Triaxial rotator 

1 Introduction 

Critical point symmetries in nuclear structure are recently receiving consid
erable attention [1-3], since they provide parameter-free (up to overall scale 
factors) predictions supported by experimental evidence [4-7]. So far the E(5) 
[U(5) (vibrational) to 0(6) (7-unstable)] [1,4,5] and the X(5) [U(5) to SU(3) 
(prolate deformed)] [2,6,7] critical point symmetries have been considered, 
with the recent addition of Y(5) [3], related to the transition from axial to 
triaxial shapes. All these critical point symmetries have been constructed by 
considering the original Bohr equation [8], separating the collective β and 7 
variables, and making different assumpions about the u(ß) and 11(7) potentials 
involved. 

Furthermore, it has been demonstrated [9] that experimental data in the Hf-Hg 
mass region indicate the presence of a prolate to oblate shape phase transi
tion, the nucleus 194Pt being the closest one to the critical point. No critical 
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point symmetry for the prolate to oblate shape phase transition originating 
from the Bohr equation has been given so far, although it has been suggested 
[10,11] that the (parameter-dependent) 0(6) limit of the Interacting Boson 
Model (IBM) [12] can serve as the critical point of this transition, since vari
ous physical quantities exhibit a drastic change of behaviour at 0(6), as they 
should [13]. 

In the present work a parameter-free (up to overall scale factors) critical point 
symmetry, to be called Z(5), is introduced for the prolate to oblate shape 
phase transition, leading to parameter-free predictions· which compare very 
well with the experimental data for 1 9 4 P t . 

2 The spectrum 

The original Bohr Hamiltonian [8] is 

H~h2 - — B4— + 1 g · ο g 
β* dßP dß β2 sin 3 7 d-y S m Ί'dj 

Σ —2 

Q ι 
4/^2,3 sin2 ( T - H 

+ V(ß,j), (1) 

where β and 7 are the usual collective coordinates, while Qk {k = 1, 2, 3) are 
the components of angular momentum and Β is the mass parameter. 

In the case in which the potential has a minimum around 7 = π/6 one can 
write the last term of Eq. 1 in the form 

Σ — 
*=i,2,3 s i n ' 

Ql 
( 7 - Ϊ * ) 

Ql + 4(Q2 + Qt) = 4(Q2 + Ql + Q\) - 3Q2. (2) 

Using this result in the Schrödinger equation corresponding to the Hamiltonian 
of Eq. 1, introducing (as in [2]) reduced energies e = 2BE/H2 and reduced 
potentials u = 2BV/H2, and assuming [2] that the reduced potential can be 
separated into two terms, one depending on β and the other depending on 7, 
i.e. u(/5,7) = u(ß) +u(j), the Schrödinger equation can be separated into two 
equations 

1 d „A d 
ß ΈΈ + 7 ^ ( 4 L ( L + ! ) - 3 a ) + u(ß) ßAdß^ dß Aß2 hAß) = *ßhAß), (3) 

1 à . 0 d . , ' 
,n2X . Q w-sin37— + ω(7) 
ψ*) sin 37 07 07 

77(7) = e777(7), (4) 
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where L is the angular momentum quantum number, a is the projection of 
the angular momentum on the body-fixed x'-axis (a has to be an even integer 

[14]), (β2) is the average of β2 over ξ(β), and e = eß + e7. 

The total wave function should have the form 

*(/3,7,ft)=a,a(/3)»7(7)^Ìf,o(W. (5) 

where 0; (i = 1, 2, 3) are the Euler angles, £>(0») denote Wigner functions of 
them, L are the eigenvalues of angular momentum, while M and a are the 
eigenvalues of the projections of angular momentum on the laboratory fixed 
f-axis and the body-fixed x'-axis respectively. 

Instead of the projection a of the angular momentum on the χ '-axis, it is 
customary to introduce the wobbling quantum number [14,18] nw = L - a. 
Inserting a = L — nw in Eq. 3 one obtains 

ρ 4 <9p σρ 4p^ 

= €*&,».(/?), (6) 

where the wobbling quantum number η ω labels a series of bands with L = 
nw,nw + 2,nw + 4, . . . (with η ω > 0) next to the ground state band (with 

nw = 0) [14]. 

In the case in which u(ß) is an infinite well potential 

4ß)-<0ttß*ß* , (7) 
oo for β > ßw 

one can use the transformation [2] ξ(β) = β3/2ξ(β), as well as the definitions 
[2] eß — k2ß, ζ = ßk0, in order to bring Eq. 6 into the form of a Bessel equation 

dz'2 ζ dz 
1 = 0, (8) 

with 

^4L{L + 1) - 3α 2 + 9 _ y/L(L + 4) + 3nw(2L - nw) + 9 
_ _ - . (9) 
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Then the boundary condition ξ{β\ν) — 0 determines the spectrum 

£ß;s,i> — €-ß;s,nw,L ~ (^s,i/) , ks,v — "TT - ' (10) 
Pw 

and the eigenfunctions 

ξ,Αβ) = U ^ M = t'oAß) = cs,uß-3/2Mks,,ß), ( H ) 

where xStU is the sth zero of the Bessel function Jv(z), while the constants 
cSi„ are determined from the normalization condition /0°°/54^u{ß)dß — 1. The 
notation for the roots has been kept the same as in Ref. [2], while for the 
energies the notation ESÌTIWÌI will be used. The ground state band corresponds 
to s = 1, nw — 0. We shall refer to the model corresponding to this solution 
as Z(5) (which is not meant as a group label), in analogy to the E(5) [1], X(5) 
[2], and Y(5) [3] models. 

The 7-part of the spectrum is obtained from Eq. 4, which can be simply 
rewritten as 

1 id cos37 d 
+ 3 — T V +W(7) {β2) \ $ 7 2 sin 37 δη 

η(Ί) = 6Ίη(Ί). (12) 

As already mentioned, we consider a harmonic oscillator potential having a 

minimum at 7 = π/6, i.e. 11(7) = | c (7 — | J = 5C72, 7 = 7 — | . In 

the case of 7 « π/6 the cos 37 term vanishes and the above equation can be 

brought into the form 

cP- 1 
Φ) = (ilß'Hi), (is) 

which is a simple harmonic oscillator equation with energy eigenvalues 

Cy = ^W){n^ + 2^ ' 7Η : " 0 ' 1 ' 2 ' · · M !) 

Similar potentials and solutions in the 7-variable have been considered in [8,19] 

The total energy in the case of the Ζ (5) model is then 

E(s, nw, L, riy) - E0 + A(xSiU)2 + Bn^. (15) 

It should be noticed that in Eq. 13 there is a latent dependence on s, L, and 
nw "hidden" in the (β2) term. The approximate separation of the β and 7 
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variables is achieved by considering an adiabatic limit, as in the X(5) case 

[2,20]. 

3 B(E2) transition rates 

For 7 ~ π/6 the quadrupole operator is given by 

T f 2 ) = -^i/?(2>$(0, . ) + V^M). (16) 

where t is a scale factor. After the insertion of the symmetrized wave function, 
B(E2) transition rates are given by 

Β (£2; Lion -+ Ζ,,α,) = — p / / x 
32π (H-d Q i i o)( l + oa/>o) 

χ [ (L^L/la^û;/) + (L&Lflcti - 2a , ) + (-1)^(4-21/1 - a ^ a , ) ] 2 (17) 

(For details on the calculation and numerical results, see ref. [26].) 

One can easily see that the Clebsch-Gordan coefficients (CGCs) appearing 
in this equation impose a Δ α = ±2 selection rule. Indeed, the first CGC is 
nonvanishing only if a; + 2 = a/, while the second CGC is nonvanishing only 
if ai — 2 = a/. The third CGC is nonvanishing only if c^ + a/ = 2, which 
can be valid only in a few special cases. The angular part of this equation is 
equivalent to the results obtained in [14]. 

It should also be noticed that quadrupole moments vanish, because of the 
Δα = ±2 selection rule, since in the relevant matrix elements of the quadru
pole operator one should have an — a/. 

4 Numerical results 

The lowest bands of the Z(5) model are given in Table 1. The notation LStTlw is 
used. All levels are measured from the ground state, O ô, and are normalized 
to the first excited state, 2 l i 0 . The ground state band is characterized by s — 1, 
nw = 0, while the even and the odd levels of the 71-band are characterized by 
s = 1, nw = 2, and s = 1, nw = 1 respectively. The ßi-band is characterized 
by s = 2, nw = 0. All these bands are characterized by n^ — 0, and, as seen 
from Eq. 15, are parameter free. The fact that the 71-band is characterized by 
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Table 1 
Energy levels of the Z(5) model (with n*, = 0), measured from the LSiTlvi = Οι,ο 
ground state and normalized to the 2^0 lowest excited state. 

S, fly) 

L 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

1,0 

0.000 
1.000 
2.350 
3.984 
5.877 
8.019 

10.403 
13.024 
15.878 
18.964 
22.279 

1,2 

1.837 
4.420 
7.063 
9.864 

12.852 
16.043 
19.443 
23.056 
26.884 
30.928 

2,0 

3.913 
5.697 
7.962 

10.567 
13.469 
16.646 
20.088 
23.788 
27.740 
31.942 
36.390 

L 

3 
5 
7 
9 

11 
13 
15 
17 
19 
21 

1,1 

2.597 
4.634 
6^869 
9.318 

11.989 
14.882 
18.000 
21.341 
24.905 
28.691 

n^ — 0 is not surprising, since this is in general the case in the framework of 
the rotation-vibration model [21]. 

5 Comparison to experiment 

Several energy levels and B(E2) transition rates predicted by the Ζ(5) model 
are compared in Table 2 to the corresponding experimental quantities of 1 9 4 P t 
[22], which has been suggested [9] to lie very close to the prolate to oblate 
critical point. Its neighbours, 1 9 2 P t [23] and 1 9 6 P t [24], which demonstrate 
quite similar behaviour, are also shown. Not only the levels of the ground 
state band are well reproduced (below the backbending), but in addition the 
bandheads of the 7i-band and the ßi-band are very well reproduced, without 
involving any free parameter. The staggering of the theoretical levels within 
the 7i-band is quite stronger than the one seen experimentally, as it is expected 
[17] for models related to the triaxial rotator [14-16]. 

The main features of the B(E2) transition rates are also well reproduced. As 
far as the transitions from the 71-band to the ground state band are concerned, 
the transitions Li)2 —>• iq,o are strong, while the transitions (L + 2)i)2 —> Li)0, 
which are forbidden in the Ζ(5) framework, are weaker by two or three orders 
of magnitude. 
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Table 2 

Comparison of the Z(5) predictions for energy levels (left part) and B(E2) transition 

rates (right part) to experimental data for 1 9 2 P t [23], 1 9 4 P t [22], and 1 9 6 P t [24]. 

•^s,nw 

4l,0 

6i,o 

81,0 

ΙΟι,ο 

2l,2 

4l,2 

6l,2 

3i,i 

5i,i 
7 U 

02)o 

Z(5) 

2.350 

3.984 

5.877 

8.019 

1.837 

4.420 

7.063 

2.597 

4.634 

6.869 

3.913 

192pt 

2.479 

4.314 

6.377 

8.624 

1.935 

3.795 

5.905 

2.910 

4.682 

6.677 

3.776 

194pt 

2.470 

4.299 

6.392 

1.894 

3.743 

5.863 

2.809 

4.563 

3.858 

196pt 

2.465 

4.290 

6.333 

8.558 

1.936 

3.636 

5.644 

2.854 

4.526 

3.944 

r(i) 

4l,0 

4l,2 

6l,2 

3i,i 

2l,2 

2l,2 

4l,2 

4l,2 

61,2 

L ( / ) 

2i,o 

2l,2 

4l,2 

2l,2 

Οι,ο 

2i,o 

2i,o 

4i,o 

4i,o 

Z(5) 

1.590 

0.736 

1.031 

2.171 

0.000 

1.620 

0.000 

0.348 

0.000 

192pt 

1.559 

1.786 

0.009 

1.909 

194pt 

1.724 

0.446 

0.006 

1.805 

0.004 

0.406 

196pt 

1.476 

0.715 

1.208 

0.0004 

0.014 

0.012 
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