
  

  HNPS Advances in Nuclear Physics

   Vol 6 (1995)

   HNPS1995

   

   

  The nucleon momentum and density distribution of
the 4He nucleus using the Morse potential 

  K. Ypsilantis, S. Dimitrova, C. Koutroulos, M. Grypeos,
A. Antonov   

  doi: 10.12681/hnps.2918 

 

  

  

   

To cite this article:
  
Ypsilantis, K., Dimitrova, S., Koutroulos, C., Grypeos, M., & Antonov, A. (2020). The nucleon momentum and density
distribution of the 4He nucleus using the Morse potential. HNPS Advances in Nuclear Physics, 6, 87–99.
https://doi.org/10.12681/hnps.2918

Powered by TCPDF (www.tcpdf.org)

https://epublishing.ekt.gr  |  e-Publisher: EKT  |  Downloaded at: 16/07/2024 00:26:53



The nucléon momentum and density 
distribution of the 4He nucleus using the Morse 

potential 

K. Ypsilantisa, S. DimitrovaiX,c, 0. Koutroulosa, 
M. Grypeosa and A. Antonovb 

a Department of Theoretical Physics Aristotle University of Tnessaloniki, Greece 
b Bulgarian Academy of Sciences Institute of Nuclear Research and Nuclear 

Energy, Sofia, Bulgaria. 
c Bulgarian Academy of Sciences Institute of Nuclear Research and Nuclear 

Energy, Sofia, Bulgaria. 

Abstract 

The nucléon momentum and density distribution of the 4He nucleus are calculat
ed by using the Morse single-particle potential. The parameters for the momentum 
distribution n(fc) are determined by fitting either the charge form factor to the avail
able experimental data of the elastic electron scattering by AH e or the momentum 
distribution to the corresponding "expérimental" values. The calculations can be 
performed partly analytically and the results show a considerable overall improve
ment with respect to those obtained with the oscillator shell model. The r.m.s radius 
of the charge density distribution determined by fitting the charge fonn factor is 
in very good agreement with the vailles obtained by means of model independent 
analysis. 

1 Introduction 

The nucléon momentum distribution ?/(fc) in 4He [1-3] has received consid
erable attention by quite a number of authors who used various theoretical 
approaches. One of the main reasons is the simplicity of this nucleus. More
over, *He is one of the very few nuclei for which "experimental" values of 7/(fc) 
are available [4] so that there is a means of checking out each method. 

Among the methods which have been used in calculations of the momentum 
distribution of nuclei, those based on many-body techniques are usually the 
most satisfactory ones. They aie, however, more complex than those based on 



single particle models. As is well known, the disadvantage of the latter is that, 
one cannot fit with such a model both the form factor and the momentum 
distribution. Thus, if the parameters are determined by fitting the theoretical 
charge form factor to the corresponding experimental results, the values of 
the momentum distribution are not expected to agree well with the experi
mental values of η(Ιε). Nevertheless, the choice of the single particle potential 
seems to play an important role in improving the results and diminishing the 
above mentioned discrepancy between the calculated and experimental val
ues of r/(&). This is clear if a strong short range repulsion is included in the 
potential. If for example a potential of the form [5] 

V(r) = -V0 + hr2 + ^, 0 < r < o o (1) 

k > 0, Β > 0 is used, then a considerable improvement is mostly observed 
not only for the form factor but also for the momentum distribution. 

A characteristic of potential (1) is that it has an "infinite soft core" near 
the origin, which seems to be an extreme. It is more natural to expect that 
there is a repulsion in the single particle potential near the origin, as for 
example relativistic Hartree calculations indicate, but not with an infinite 
behaviour near the origin. Thus, a potential of the Morse type [6-12 ] which, 
as is well known, has many applications in Physics, might be appropriate 
as a first approximation to the single-particle potential of a light nucleus. 
The disadvantage is that the Schrödinger eigenvalue problem can be solved 
analytically only for the s-states for this potential. Therefore, it is not so 
convenient to use for heavier nuclei if one wishes to take advantage of its 
analytic properties. 

In the next section the notation is specified and basic formulae regarding the 
Schrödinger eigenvalue problem with the Morse potential are given, hi section 
3, the expressions of the density distribution and its m.s. radius, the form 
factor and momentum distribution are given. The final section is devoted to 
the numerical results, comments and conclusions. 

2 The exact and approximate single-particle s-state wave func
tions 

The well-known Morse potential is given by the following expression [6]: 

V(r) = D[e-2<r-ro) - 2e~a{r~T^] = -D + D[l - e-a(r-r°)]2, 
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Ο < r < οο. (2) 

It has its minimum value (—D) at r = r0, tends assymptotically to zero as 
r —> oo and is repulsive near the origin taking the value De2ar° (1 — 2e~ar° ) at 
r = 0. The corresponding radial Schröndinger equation for the s-state wave 
functions φηο{^) — rRno{r), may be written in the form [7,8] 

2<ΡφηΟ . άφη0 β2 η 1 2 

^ + * 1 f + ( - ^ + ^ - i ^ » ° = 0 · <3> 
where 

β2 = -%Ε, Ί

2 = ^Ό = ά2α2 and y = *Le-*-*\ (4) 
Γί ft Gt 

The differential equation (3) has singularities at y = 0 and y = oo. By setting 
(in view of the asymptotic behaviour at the boundaries): 

Φηθ(ν) = yß/ae-v<2F(y), (5) 

one obtains a differential equation for F(y) 

yF" + (c~y)F'-\F = 0, (6) 

where 

2/? 1 7 
c = — + 1, A = - c - I . (7) 

α 2 α 
Eq. (6) is of the standard form of the confluent hypergeometric differential 
equation with the exact solution 

F{y) = An0 • iF^X-c-y) + Bn0 · y^iF^X - c + 1;2 - c;y). (8) 

To satisfy the boundary condition φη0 = 0 for r —+ oo or y = 0, the constant 
£?„o is bound to vanish since the exponent of y is negative. So, the exact wave 
function becomes: 

ΦΜ = An0yV«e-*l\Fx{\;c,y). (9) 

The constant A„o is to be fixed by the normalization condition. 

The second boundary condition, φη0 = 0 at r = 0, or y = yo = 2^-ear° leads to 
the following transcendental equation for the energy eigenvalues: 
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iFi(A;q»b) = 0. (10) 

Equation (10) has to be solved numerically in order to determine the bound 
s-state energies and subsequently the corresponding eigenfunctions. 

An approximate analytic expression for the energy eigenvalues En0 may be 
obtained [7,8] from (10) if yo turns out to be sufficiently large so that one 
can use the asymptotic expression of ι F\. Such a condition is reasonably well 
satisfied for the numerical values of the parameters of the Morse potential, 
typical for the 4He nucleus, when these are determined by fitting the charge 
form factor (see last section). It should be also noted that the case of very 
large yo(yo —* oo) leads to the same eigenvalues which result if the boundary 
condition was not ^n/(0) = 0 but φηι{—oo) = 0. Therefore the condition 
that yo be very large leads to eigenvalues Eno which are the same as those 
appearing in the corresponding one-dimensional eigenvalue problem. In view 
of the previous remarks we may write 

i ^ ( A , c ; y o ) ^ ^ e ^ o

A - c = 0 (11) 

Therefore Γ(λ) = oo and λ = — η, η = 0,1,2,... Consequently, the approx
imate energy eigenvalues are given by the expression: (derived originally by 
Morse [6]): 

En0 = ~-P = -¥-a\2d-\-2nf = - 2 H ^ ( n 4 ~ ) - ^ ( n + \f (12) 

where the integer η is in the interval 0 < η < {^γ-) and u^ is the angular 
frequency of the classical small vibrations around r 0 : 

„0=:a(?R)m (13). 

In the present case the analytic expression of the corresponding eigenfunctions 

is simplified since the confluent hypergeometric function in (9) becomes a 

polynomial. Thus we obtain 

Φηο(ν) = iVn0e-de-e(r-ro)e-f<w-i-*n)<r-n,>. I f - » - » p d e " < r " ^ ) (14), 

where the normalization factor JVno is given by 

Nno = [An0(2d)^2d-l-2^nT{2d - 2n)/T{2d - n)] 
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and the generalized Laguerre Polynomials X*(y) are denned by L6

n{y) = 
ev££-£ze-vyn+s.lt should be noted that this definition of L6

n, which is the 
more commonly used, differs somewhat from that used by Morse [6]. 

The approximate ground-state radial wave function in which we are interested 
here is given by the expression: 

Φοο(ν) = Nne-^-^e-ÌW-W-'K (15) 

where the normalization constant NQO is expressed in terms of the parameters 
a and d as follows: 

^ = lfJ2^ï)]2· (16) 

In the present calculations we are using both, the exact and the approximate 
solutions of eq. (3). 

3 Expressions for the density distribution, the form factor and 
the nucléon momentum distribution in 4He. 

In this section we give the expressions of the density distribution, its m.s. 
radius, the form factor and the momentum distribution of 4He. 

The normalized to unity (/ p(r)d?r = 1) density distribution in the single 
particle model is given by the general expression [1] 

Pi'-) = ϊ ^ Σ ™ ' tW + DIAeMP (17)· 
Thus, in the case of the 4He we have simply (Roo\/2 -* Roo) 

p(r) = ^ | ßoo( r ) | 2 (18) 

The point-proton form factor in the Born approximation and for spherically 
symmetric p(r) is: 

F(q)=torp(r)(S-^ydr (19) 
Jo qr 

In the case of AHe we have 
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F(q) = / ~ ^ ( Γ ) | 2 ( ^ ) Γ 2 Α · (20) 

J ο qr 

The proton form factor is introduced using the Chandra and Sauer parametriza-
tion [13] 

/Λ) = Σ ΐ ν 4 - (2D 
where 

AP1 = 0.506373, AP2 = 0.327922, AP3 = 0.165705 

and 

a2

pi = 0.431566/m2,a2

2 = 0.139140/m2,a2

3 = 1.52554/m2 

The center of mass correction in the Form Factor of 4He is taken into account, 
using the "fixed center of mass correction" of Radhakant-Khadkikar-Banerjee 
[14]. Thus, the expression of the form factor corrected for the center of mass 
motion is: 

- _ fd*u>F(\q+à\)F*(u;) 
F{q) - / d W » ( 2 2 ) 

Therefore the theoretical expression for the charge form factor is: 

Fch{q) = ÎM • F(l) (23) 

The normalized to unity nucléon momentum distribution ϊη(&:)ά3}ϊ = 1, for a 
nucleus, in the single particle model is given by the general expression [1] : 

•?(*) = J^ESTW+DAWWI' < 2 4 > 
where 

2 f°° 

RmAk) = ( - ) 1 / 2 H ) ' / A T V I W A O / W ; (25) 
7Γ JO 

Thus, in the case of the 4He we have simply: 

*(*) = ^\f^(k)\2 (26) 
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where 

*»(*) = ( - ) 1 / 2 / drr*jo(kr)Roo(r) (27). 
X 7 0 

The m.s. radius of the density distribution is calculated from the formula 

2^_f?r2P{r)<Pr 
2 > JO r v r (28) 

The above formulae if the approximate wave-function of the Morse potential 
is used, read as follows for 4He 

"<r> = hh^^'u'"""')e'°{u'l)""°) <29) 

Fia) = j l $ | j ^ ] / jV™ ( ^ ) e ~^^ ) e ^ , *~" 1 <3°) 

The integrations in (30) and (31) aie performed numerically. 

4 Numerical results, comments and conclusions 

Calculations of the form factor, the nucléon momentum distribution, the point-
proton (or body) and charge density distributions and their root mean square 
radii were performed for 4He using the exact as well as the approximate so
lutions of the Schrödinger equation. In these calculations the center of mass 
correction was taken into account either by using the Radhakant-Khadkikar-
Banerjee (RKB) correction, in which case in the formulae the ordinary nu
cléon mass m is used or by using simply the reduced mass μ. The potential 
parameters were determined by the least-squares method either by fitting the 
theoretical expression of the charge form factor to the experimental data or 
by fitting the theoretical expression of the momentum distribution to the cor
responding "experimental" data. We note that some preliminary results by 
fitting the charge form factor of 4He (calculated with the Morse potential) to 
older experimental data have also been reported in ref. [9]. 
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In fitting the charge form factor the following cases were considered which 
led to the corresponding best fit values for the potential parameters (given in 
brackets): 

Case I: The exact wave function was used in calculating the form factor and 
the RKB method for the center of mass correction (a = 1.5501/m-1, d — 
1.2262 (D = 74.9A4W), r0 = 0.9216/m). 

Case II: The approximate wave function was used and the RKB method 
for the centre of mass correction (a = 1.6897/m-1, d — 1.1134 (D = 
73.4MeV), r0 = 0.9095/m). 

Case III: The approximate wave function was used with the reduced mass, 
while in the previous cases the nucléon mass m was used instead of μ (a = 
1.5476/m-1, d = 1.4785 {D = 144.7MeV), r 0 = 0.8822/m). 

In fitting the momentum distribution the following cases were considered (us
ing the reduced mass): 

Case a): The exact wave function was used in calculating the momentum dis
tribution {a = 2.2563/m"1, d = 1.0215 {D = 146.9Me7), r 0 = 0.3195/m). 

Case b): The approximate wave function was used (a = 2.1427/m 1 , d = 
0.8928 {D = 101.2MeV), r 0 = 0.5321/m). 

It is seen from the above results that usually the best fit values of the param
eters a and ro do not differ very much in each set of the above cases. There 
is, however, a more pronounced difference if the comparison is made between 
the corresponding best fit values of the first and the second set. It should be 
also noted that the value of φ0 (see section 2) is considerably smaller in case 
a) than in case I. 
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Fig l.The charge form lactor of 4He for various cases (see text) 

In figure 1, the variation of log\Fch(q)\ with q2 for 4He is plotted for the cases 
Ι, Π, and ΠΙ, mentioned above. The corresponding curves are, FFE, FFA and 
FFRM, respectively. In the same figure the experimental data are shown by 
crosses. We notice that all three curves fit the experimental data well. In the 
same figure the results obtained calculating the form factor by using the best 
fit values of the potential parameters determined by fitting the momentum 
distribution are also shown. Thus, using the best fit values given in case a) 
above, the curve MDE is obtained. Using the best fit values given in case b), 
the curve MDA is obtained. We notice that the results are not good. This is 
a manifestation of the statement that one cannot fit simultaneously with a 
single-particle model, the form factor and the momentum distribution. Also, 
in the same figure we give the results obtained using the harmonic oscillator 
potential with potential parameter b = 1.432/m determined by fitting the Fch 
(curve HO). This is in fairly good agreement with the experimental data at 
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the small values of the momentum transfer, as is well known. 

k(fm _ 1 ) 

0.0 4.0 8.0 12.0 16.0 
0.0 

-4 .0 

S - 8 . 0 

- 1 2 . 0 

- 1 6 . 0 

Fig 2.The nucléon momentum distribution of 4He for various cases (see text) 

In figure 2, the variation of the /o<77/(fc) with k in 4He is plotted for the cases 
a) and b), mentioned above. The corresponding curves are MDE and MDA, 
respectively. In the same figure the "experimental" points are shown by aster-
iscs. We see that both curves are in good agreement with the "experimental" 
data in the region where these results are known. The theoretical curves de
viate from each other for the higher k values as one should expect. In the 
same figure, the results obtained calculating the momentum distribution, by 
using the best fit values of the potential parameters determined by fitting the 
charge form factor, are also shown. Thus, using the best fit values given in case 
I above the curve FFE is obtained, while using the best fit values given in case 
II above the curve FFA. Also, in the same figure we give the results obtained 
using the harmonic oscillator potential with 6 = 1.432/m (curve HO(a)). It is 
seen that for the lower values of the momentum the agreement with the "ex-

I I I I I I I I I | I I I I I I I I I | I I I I I I I I I | I I I I I I I I I | 
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perimental" data is not bad, but for the larger values there is the well known 
unrealistically steep decrease of η(Ιΰ). The situation is considerably improved 
if 6 is determined by fitting the n(k) (see curve HO(b)) but the overall fit is 
still less satisfactory than that of MDE. 

The body and charge density distributions of 4He were also calculated using 
the exact and the approximate wavefunctions with the potential parameters 
indicated in cases I and II. The corresponding curves are shown in figure 
3. In this figure pBe(r) is the body density distribution obtained using the 
exact wavefunction with potential parameters given in case I, while PBa(r) is 
the body density distribution using the approximate one with the potential 
parameters given in case II. pch(r)(e) is the charge density distribution using 
the exact wave function with potential parameters given in case I and pcil(r)(a) 
is the charge density distribution using the approximate wavefunction with 
potential parameters given in case II. 

0.06 
yoch(r) (e,a) 

r ( f m ) 

Fig 3.The charge pch point-proton (body) pe density distributions of 4He ob-
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tained with the exact (e) and the approximate (a) wave functions. 

It is seen that the analytic approximate expression for PBa{r) is in good agree
ment with the exact one except for a small region near the origin r <> 0.2 fm. 
The pronounced dip of the point-proton density at small r is expected. It is 
due to the short range repulsion of the Morse potential. This is largely smeared 
out in the charge density because of the proton charge density. 

The root mean square radii of these distributions are respectively : 

< r2 >1'2 (pBe{r)) = 1.651/m 

< r2 >1 / 2 (pBa{r)) = 1.665/m 

<r2>^(pck(r)(e)) = 1.668fm 

< r2 >1^2 (pch(r)(a)) = 1.678/m 

In conclusion, let us summarize the main results of the present investigation: 

1) The Morse approximate analytic ground state single-particle wave function 
of the 4He nucleus, when the parameters are determined by fitting the FCh,(q)^ 
agrees fairly well with the corresponding (semi-analytic) exact one, except 
for a small region near the origin. This has the effect that certain quantities 
calculated with the approximate wavefunction such as pß{r) and n(k) differ 
substantially, at small r and large fc, respectively, from the corresponding 
values obtained by means of the exact wavefunction. However, this is not the 
case for the pch{r) and the log\Fch{q)\. 

2) Although we can not fit simultaneously the form factor and the momentum 
distribution, because as is well known a single-particle wave function can not 
achieve this, considerable overall improvement is observed in comparison with 
the results obtained with the harmonic oscillator wave function. 

3) The < r2 >1/2 of the charge density distribution is compared favourably 
with the values 1.671 fm and 1.696/m obtained with model independent anal
ysis [15]. 
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