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Abstract 
Valuable information on the correlation structure of the nuclear medium is 

stored in the generalized momentum distribution n(p,Q), the Fourier transform of 

the half-diagonal two-body density matrix plh(rnr2,r{). In this paper, we present a 

numerical calculation of n(p,Q) for two Jastrow-correlated models of 

symmetrical nuclear matter based on the structural decomposition of n(p,Q) 

derived by Ristig and Clark and on a Fermi-hypernetted-chain procedure. Results 

exhibit significant departures from the ideal Fermi gas case in certain kinematic 

domains; this behaviour indicates the strong short-range correlations present in 

these models. Nevertheless, such deviations are less prominent than in earlier low-

cluster-order calculations. The results are also used to judge the quality of 

Silver's approximation for n(p,Q). 

1 .Introduction 

There is currently increasing interest in the development of a detailed and 

quantitative description of the generalized momentum distribution n(p,Q) and 

the associated two-body density matrix of finite nuclei. This interest is mainly 

stimulated by the fact that accurate interpretation of a range of recent and planned 

experiments on inclusive quasi-elastic (e,e') scattering [1] as well as exclusive 

(e,e'N) [2] scattering, etc. hinges on a quantitative study of the propagation of 

ejected nucléons and their final-state interactions (FSI) due to their collisions 
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mainly with the repulsive cores of the potentials on neighbouring nucléons. 

Reliable extraction of quantities such as momentum distributions, spectral 

functions and transparency from the experimental data requires an accurate 

accounting of final-state effects. As we progress beyond mean-field, optical-model 

descriptions, theoretical treatments of FSI are found to involve, as input, the 

diagonal and half-diagonal portions of the two-body density matrix [3-11]. 

Finally, n{p, Q) is involved in fundamental sum rules that provide insight into the 

nature of elementary excitations of quantum many-body systems [12]. 

Following the microscopic evaluation of the momentum distribution n(p) 

and its Fourier inverse, the one-body density matrix p,(rj,rf), variational theory 

has been extended to the investigation of. the half-diagonal two-body density 

matrix p2h(r,,r2,Tf) of the ground states of infinite symmetrical nuclear matter 

and other uniform strongly interacting Fermi systems [13]. Initial calculations of 

n{p,Q) have recently been performed [14] for simple models of nuclear matter 

defined by Jastrow-correlated wave functions, applying low-order cluster 

approximations within the theory of Ref. [13]. In this paper as well as in Ref.[26] 

we present the results of our calculations obtained within the framework of the 

Fermi-hypernetted-chain procedure. 

We consider uniform, isospin-symmetrical, spin saturated nuclear matter at 

density p, with corresponding Fermi wave number kF = (6π2ρ/ν)1 / 3 , where 

ν = 4 is the level degeneracy of plane-wave single-particle states. For a given state 

vector \ψ), the generalized momentum distribution n{p,Q) is defined by: 

n(p,Q) = l< Ψ^α^α^Ψ > (1) 

Here, k labels the single-particle orbital with wave vector k and spin/isospin 

projections σ,τ while k + Q = (k + Q,o,r). The role played by the generalized 
momentum distribution in final-state interactions emerges clearly by introducing 

the density fluctuation operator ρ = Σ at ai (Q Φ 0) and writing definition (1) 

in the form 

n(p,Q) = M p ^ a » - n{p) (2) 

The first term on the right may be interpreted as a transition matrix element for 

scattering a particle out of orbital ρ = (ρ,σ',τ') to another orbital 
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p-Q = (p-Q,o',T'), the process being mediated by a density fluctuation of 

wave vector Q. The function n(p,Q) is connected to the half-diagonal two-body 

density matrix 

p2h{rI,r2,r!) = A(A-\)W\ri,r2,r3,...,rA)*i>{r;,r2,r3,...,rA)dr3...drA (3) 

by the Fourier transformation 

n{p,Q) = \^ J P2h(r„ rt,ifrr«'>-»e-»«-»drldrJi; (4) 

In writing (3), the spin/isospin variables have been suppressed for the sake of 

economy. For the noninteracting system, the Pauli exclusion principle generates 

kinematic particle-particle correlations and n(p, Q) takes the form 

nF(P>Q) = SQ0(A-\)9(kF -p)-(1 -6 Q 0 )9{k F - p)9{kF -\p-<?|) (5) 

In addition to time-reversal invariance, the generalized momentum distribution 

n(p,Q) has the following formal properties that arise from the corresponding 

properties of plh{r1,r2,r{) [13]. The sequential relation in configuration space 

J P2„(j;,r2,rf)dr2 = (A- l)p,(rnrf) (6) 

relating P2hiri>r2>r\) a n d the one-body density matrix p,(r,,r{), may be 

transformed to momentum space to yield a relation between n(p,Q) and the 

momentum distribution n(p) 

n(p,Q = 0) = (A-\)n(p) (7) 

For the full-diagonal case (rj= η), Eq. (3) reduces to plh{r,,r2,rx) = p2g(rl2) and, 

summing over ρ in Eq. (4), we arrive at the so-called ρ sum rule 

A-^n(p,Q) = AÒQ0 + S(Q)-l (8) 
P 

where S(Q) is the static structure function. In the case of strong short-range 

repulsions, n(p, Q) also obeys the Q sum rule 
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Ση(ρ,<?) = 0 (9) 
Q 

Three approximations [16-18] have been proposed for estimating n(p,Q). 

In formulating his hard-core perturbation theory of FSI, Silver [17] has proposed 

the simple approximation 

*(/»,<?)" ^ Σ Ι Ι ( Ρ , < ? ) (io) 

which, combined with Eq. (8), leads to the following equation for n{p,Q) for 

Q * 0 : 

n{p,Q)~n{p)[S(Q)-\] (11) 

This form obeys the ρ and Q sum rules and meets the sequential relation, but 

violates time-reversal invariance. 

A microscopic analysis for the evaluation of n(p,Q) and p2h(rt,r2)rf) at the 

variational level of correlated-basis-function (CBF) theory, for both Bose and 

Fermi systems, has been developed by Ristig and Clark [15,13]. For the Fermi 

case, the ground state wave function is approximated by the Jastrow-Slater 

Ansatz 

Ψ(ί,...,Α) = Ν'ΰί(^)Φ(\,...,Α) (12) 

where Φ is a Slater determinant of A plane-wave orbitale filling the Fermi sea up 

to kF> f(rjj) is the Jastrow two-body correlation function and TV is a 

normalisation constant. Cluster-diagrammatic decomposition was followed by 

graphical resummations to yield structural formulas for p2h(r,,r2,r() and for 
n(P->0)· The quantities building up these functions can be computed either by 

cluster expansion to some (low) order or by Fermi hypernetted-chain (FHNC) 

techniques [19-21]. In Ref. [14], numerical calculations of n(p,Q) within this 

framework were begun for nuclear matter described by a Jastrow-Slater wave 

function. Two approximation schemes were investigated: 

(i) LO approximation. Evaluation to lowest (two-body) cluster order in the 

factorised-Iwamoto-Yamada cluster expansion generated for n(p,Q) directly 

from the definition (1). 
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(ii) LOICl approximation. Lowest-cluster-order evaluation of the ingredients of 

the renormalised structural expression for n{p,Q) (See Eq. (13) below). 

The results of the pilot studies of Ref. [14] differ significantly from the 

noninteracting Fermi gas case. However, a detailed investigation of individual 

contributions to this behaviour, for models of nuclear matter with different 

correlation strengths, indicates that the contribution of neglected higher order 

cluster terms may be quite important. The occurrence of large violations of the 

sequential relation (7) within the approximation schemes of Ref. [14] supports 

also this conclusion. The above considerations indicate that it would be advisable 

to proceed to a Fermi hypernetted-chain (FHNC) treatment of n(p,Q). The goal 

of the present paper is to perform such an evaluation at the FHNC/0 level and 

then to compare it, specifically, with Silver's approximation (Eq.(l 1)). Section 2 

sketches the framework of our calculation. The numerical results for two simple 

nuclear-matter models are reported and discussed in Section 3. Some perspectives 

for future work are presented in Section 4. 

2.Fermi Hypernetted Chain Analysis 

Our calculation is based on the microscopic analysis of p2h{rl,r2,r^) 

developed for Fermi fluids by Ristig and Clark [13] within the variational CBF 

theory. For a uniform Fermi system described by a Jastrow-Slater wave function, 

application of the factorised Iwamoto-Yamada (FIY) cluster expansion scheme 

[22] leads to an infinite cluster series whose addends are generally reducible, i.e. 

they can be factorised into products of cluster diagrams. Resummation of 

graphical subseries with the aid of hypernetted chain techniques results in a closed 

form expression for n(p, Q) in terms of a small number of irreducible quantities 

[13], 

n{p, (?) = (A - ϊ)δΟ0η(ρ) + (1 - δΟ0 )FQdd (Q)[n(p) - n<\p - <?|)] 

+0 - SQ0)FQde(Q)[nDI(p) + nDI(\p - <?|)] 

-n0(l-Soo)[0(kF -p)-FQcc(pW(kF -\p-Q\)-FQJp-<?|)] 

+(i - 5QM2XP, <?)+(i- sQMy\p, Q) 

(13) 

(The Q index appearing in Eq.(13) is introduced to make the necessary connection 

with Ristig's notation [21]: it should not be confused with the momentum variable 
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Q.) In the above expression, n0 is the strength factor that arises in the structural 

formula for the momentum distribution n{k) [19-21]. The modified momentum 

distribution nDI(k) is defined by 

nDl(k) = ̂ ipw(ry(r)e-^dr (14) 

where pw(r) is the direct-direct (dd) component of the full Fermi one-body 

density matrix px(rj,r{). In addition, we have the "two-point" quantities FQxy(k) 

(with xy=dd, de or cc ~ for the meaning of the subscripts dd, de, ce see 

Appendix) which serve as form factors, and the "three-point" quantities 

n{2'\p,Q) and n^'\p,Q). The designations "two-point" and "three-point" refer to 

the graphical topology of the corresponding configuration space functions. The 

"three-point" quantity n(2'\p,Q) is given by a three-dimensional integral over a 

sum of products of two-point functions 

n(*\p,Q) = l^ÎKir^r^e-^'-^e-^^W^dr; (15) 

where (with r = \η - r2\ and r' = | r/- r2\) 

K{r,,r2,r?) = ρ p,(r,, rI

/)FQdd(r)FQdd(r') 

+pp^rl,rf)/(r1>r^[FQM(r)FQde(rO + FQdd(nFQde(r)] 

-vp[pw(r„ rf) - pn0][v-V(r) - FQcc(r)][v-/(rO - FQcc(r')] 

(16) 

The remaining "three-point" quantity n(-y)(p,Q) is an integral over a sum of 

terms, each of which involves at least one irreducible three-point function. 

The inputs of Eq.(13), namely n0, n(k), nDI(k), the FQxy(k) and rP'\p,Q) 

were calculated by implementing the FHNC algorithm at the level in which 

elementary diagrams are omitted (FHNC/0). (The contribution of elementary 

diagrams is generally expected to be significant only at higher densities; thus, 

elementary diagrams are commonly ignored in calculations on nuclear systems 

[22,23].) The corresponding sets of FHNC equations are too extensive to appear 

in this presentation; the interested reader may find the detailed expressions in 

Refs. [13,20,21]. The results obtained were further used to calculate the 

corresponding FHNC results for n(p,Q). In our calculation, the term n(y\p,Q) 
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was omitted; the reasoning is similar to that applied in neglecting elementary 

diagrams. 

Expression (13) for n(p,Q) assumes that the sequential relation (7) is 

satisfied. In terms of the ingredients of Eq.(13), this condition is equivalent to 

2FQdd(0)n(p) + 2FQdc(0)nDI(p) - η0[θ(Κ - p)~ FQcc(p)]2 

+n<2\p,0) + n<y\p,0) = -n(p) { ) 

The FHNC/0 evaluation necessarily compromises the sequential relation (7) (and 

hence (17)) to some extent, due to the absence of elementary diagrams and the 

term iP'\p,Q). For the same reason, it also fails to meet the ρ sum rule (8) 

(although the violation may be small). On the other hand, the FHNC/0 

approximation does conserve time-reversal invariance and obeys the Q sum rule 

(9)· 

3.Numerical results 

Numerical calculations of the generalized momentum distribution are 

performed for two models of nuclear matter near its saturation density. These 

models provide a representative picture of the short-range repulsive correlations of 

nuclear systems while the intermediate and long-range correlations are described 

in an average way [24]. Both models refer to the density value ρ = 0.182 fin-3, 

corresponding to kF = 1.392 fm"1. 

The "Monte Carlo" (MC) model is drawn from a variational Monte Carlo 

study of Ceperley et al [25]; it entails the following form of the Jastrow 

correlation function 

/•(r) = e x p [ - C , e - c " - L - 7 - i ] (18) 

The parameters C, =1.7 fin, C2 =1.6 fin-1, C3 =0.1 fin were determined by 

minimisation of the Jastrow-Slater energy expectation value corresponding to the 

ground state of symmetrical nuclear matter. The assumed interaction is the υ2 

potential; this state-independent potential consists of the central part of the Reid 

soft-core interaction in the *Sx-
iDx channel, acting in all partial waves. 

The "Gaussian" model (designated G2) is specified by the Jastrow correlation 

function 
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/\r) = l -exp(-^r 2 ) (19) 

with β = 1.478 ihr1. This model has no direct connection with any familiar two-

nucleon interaction. However, it could be associated with a potential containing a 

soft repulsive core ~ softer than the Yukawa core present in the υ2 interaction. 

The correlation functions f(r) of the two models are plotted in Fig. 1. 

Qualitatively similar, they nevertheless show significant differences in behaviour 

both in the core region and at medium distances. The corresponding wound 

parameters, κώΓ = pj(f(r)-i)2dr for the two models are 1^ = 0.297 (MC) and 

0.111 (G2). 

1.20 

f(r) 

1.00 ζ 

0.80 '-. 

0.60 

0.20 

0.00 

I I I I I I I 

0.00 1.00 2.00 3.00 4.00 5.00 

r (fm) 

6.00 7.00 8.00 

Fig. 1. Pair correlation functions f(r) defining the Monte Carlo (MC) and 
the Gaussian (G2) models of the correlation structure of nuclear matter, plotted 
against radial distance r. 

The FHNC/0 procedure was employed to construct the dimensionless 

quantity n(p,Q) from Eq. (13) (disregarding the term n(3,)(p,Q)) at selected 

points in the ranges [0,3 k F] and (0,4kF ] of the momentum variables ρ and Q 

respectively. Attention is restricted to Q Φ 0, since as it can be seen from Eq. (13), 

at Q=0, the generalized momentum distribution just reproduces the single particle 

momentum distribution n(p) , with the large factor A-l. We focus on the case in 

which ρ and Q are parallel. In Ref. [14], the dependence of n(p,Q) on the angle 
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θρ Q between ρ and Q was studied for the MC model in the LO approximation. 

Similar behaviour is to be expected in the FHNC/0 treatment. 

Fig. 2 displays n(p,Qp/p) for the MC model as given by the FHNC/0 

approximation. Figs. 3 and 4 present n(p,Qp/p) as a function of Q at p = k~F 

and ρ - 2kF respectively, the results for the MC and G2 models being compared 

with that for noninteracting fermions. It should be noted that the function 

n(p,Qp/p) is discontinuous. For p<kF it is discontinuous at Q = p + kF 

whereas for p> kF it has discontinuities at Q = ρ - kF and Q = p + kF. Also, as 

can be seen from Eq. (5), for p< kF, deviations of -n(p,Qp/p) from unity for 

Q < p + kF and from zero for Q> p + kF measure the effects of dynamical 

correlations. For p> kF, dynamical correlations are also responsible for any 

nonvanishing values of n(p,Q). As expected from the corresponding sizes of the 

wound parameters, the calculated deviations from the Fermi gas limit are 

generally somewhat larger for the MC model than for G2. 

Fig. 2. Generalized momentum distribution n(p,Q) as a function of 
momentum variables ρ and Q (>0) for ρ parallel to Q, calculated by the FHNC/0 

procedure based on MC correlations and nucléon density ρ = 0.182 fin"3. 

147 



1.40 

<y 0.80 

S 
I 0.60 

0.40 

0.20 

-0.00 -

-0.20 

ι ι ι—ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι—ι ι ι ι ι ι ι I I I 

M.C _ 
y ^ 

t .-— v - ^ 

// 
Ideal Fermi gas p=kr 

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 

Q/kF 

Fig. 3. Generalized momentum distribution n(p,Q) as a function of Q(>0) 

for Q//p and p = k~F, calculated by the FHNC/0 procedure based on the MC and 

G2 models and nucléon density ρ = 0.182far3. The result for the ideal Fermi gas 
(solid curve) is included for comparison. 
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A comparison of the FHNC/0 results with the cluster-truncation results is 

presented elsewhere [26]. It is found that higher-order contributions present in the 

FHNC/0 treatment have a net large positive effect at low Q or at low Q-kF 

which greatly reduces the amplitude of the correlation correction to the Fermi-gas 

limit. Also, for all cases examined, use of the FHNC/0 algorithm in place of the 

low-order cluster prescriptions leads to dramatic improvement toward satisfaction 

of the sequential relation. 

We pause in the presentation of the results for n(p,Q) to provide a view of 

some of its ingredients calculated within the FHNC/0 approximation for the MC 

model. Fig. 5 illustrates the momentum distribution n(k), the modified 

momentum distribution nDi(k) and the circular-circular form factor FQcc(k). 

1.00 

0.90 

0.80 t 

0.70 -_ 

0.60 

0.50 

0.4-0 -j 

0.30 

0.20 

0.10 

-0.00 

-0.10 

ι I I I | I I I I I I I I I | ι ι ι ι ι ι ι ι ι ι I I I 

0.00 

f(r):M.C 

F*»(k) 

' I ' ' ' ' ' ι ' i 

2.00 3.00 

k/kP 

5.00 

Fig. 5. Momentum distribution n(k), modified momentum distribution 

nDl{k) and the circular-circular FQcc(k) form factor , as functions of k, calculated 

in the FHNC/0 approximation for the MC model and nucléon density 

ρ = 0.182 fm-3 

We shall now present a test of the quality of the simple formula (11) 

employed for the generalized momentum distribution by Silver [17], by 

comparing it with our FHNC/0 evaluation. Silver's formula (11) corresponds to 

the following replacements 
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n(p) = nDÌ(p) 

FQdAQ)+FQde(Q)=S(Q)-i 

e(kF-p)-FQcc(p) = 0 

(20) 

(21) 

(22) 

Figs. 5-7 provide the results at the FHNC/0 level for the MC model which 
allow us to judge approximation (11) in terms of its ingredients (20)-(22). Fig. 5 
exhibits the merits and demerits of approximation (20). The two momentum 
distribution functions n(p) and nD,(p) are seen to have very similar behaviour; 
their magnitudes differ typically by less than 2-3%. The poor quality of the 
estimate (21) is revealed in Fig. 6, which shows S(Q)-1 and the sum 

FQdd(Q) + FQde(Q). 
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Fig. 6. Comparison of the FHNC/0 results for the quantities 

FQdd(k) + FQde(k) and S(k) - 1 , computed for the MC model and ρ = 0.182fm"3. 

The shortcomings of assumption (21) are clearly exposed and are particularly 

apparent at small momenta. It is interesting to consider a coordinate-space view of 

Fig. 6, in relation to the assumption FQdd(r) + FQdc(r) = g(r)-l (the Fourier 

transform of Eq.(21)). The quantities FQdd(r) +FQde(r) and g(r)-l are compared 

in Fig. 7, where we note that the former function has a significantly smaller 

correlation hole than the latter at short distance, corresponding to a significantly 

smaller excluded volume. The same behaviour is seen for G2 model (Fig.8) as 
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well as for liquid 3He [13]. The Pauli exclusion corrections to n(p,Q) of the 

circular type, included in 6{kF- p)- FQcc(p), are omitted in Silver's 

approximation; even the trivial kinematic statistical effect of the first term is 

ignored. Fig. 5 shows the significance of the circular-circular form factor FQcc(k). 

This function vanishes inside the Fermi sea, jumps to a height of about 0.1 at the 

Fermi surface, and decreases slowly in magnitude with further increase of the 

wave number p. 

-1.00 t 

FwdW+Fw.d·) 

•«(r)-l 

f(r):M.C 

0.00 2.00 4.00 6.00 8.00 10.00 12.00 

r (fm) 

Fig. 7. The comparison of Fig. (6) is repeated in coordinate space, g(r) 
being the radial distribution function corresponding to the static structure function. 
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Fig. 8. As in Fig. (7) but for the G2 model. 
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Further, we compare the FHNC/0 evaluation of the generalized momentum 

distribution with results obtained within Silver's approximation scheme. Silver's 

Ansatz (11) is constructed from inputs n(p) and S(Q) calculated in FHNC/0 

approximation. In table I, selected results for n(p,Q) are compared with results 

from the current FHNC/0 evaluation of this quantity based on the Ristig-Clark 

theory. In Figs. 9 and 10 the comparison is made for Q//p at p=k} and 

p = 2kF respectively. For p = k~F, the Silver estimate of -n(p,Q) lies 

considerably below the FHNC/0 result in the "Fermi gas" regime specified by 

p< kF and \p - QJ < kF and misses the discontinuities in the Q dependence 

implied by the Pauli kinematic effect. This behaviour is also exposed in Fig. 10. 

TABLE I. Values of the generalized momentum distribution n(p,Q p/p) of 

nuclear matter at nucléon density ρ = 0.182 fin-3 obtained for the MC choice of 

correlations using the FHNC/0 method and using Silver's approximation. 

Q/kF 
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Fig. 9. Generalized momentum distribution n(p,Qp/p) as a function of 

Q (>0) at ρ = k~F, as calculated from Silver's formula and in FHNC/0 

approximation, for the MC model and at ρ = 0.182 fm~3 . 
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Fig. 10. As in Fig. (9) but at ρ = 2kF. 
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The conclusions drawn from Fig. 7 and 8 are also relevant to a recent study 

of FSI in inclusive (e,e') scattering from nuclear matter carried out within 

Glauber correlated theory by Benhar et al. [3], which showed that short-range 

correlations produce an effect qualitatively similar to that of color transparency 

[27-29]. However, they have approximated the effects of short-range correlations 

in essentially the same manner as Silver, who replaces FQdd(r) + FQde(r) by 

g(r) - 1 . Therefore, it is evident that if convincing conclusions are to be drawn 

from experiment regarding the quantitative importance of color transparency in 

inclusive scattering of GeV electrons, it will be necessary to make an accurate 

accounting of the analogous effect of short-range nucleon-nucleon correlations, 

with the half-diagonal two-body density matrix as the natural descriptor. 

4.Conclusions 

In summary, we have performed a quantitative microscopic determination 
of a momentum-space transform n(p,Q) of the half-diagonal two-body density 
matrix of nuclear matter within the Fermi hypernetted-chain scheme. The 
calculations were restricted to the case of a ground-state trial function containing 
only state-independent, central, two-body correlations. The results exhibit 
interesting features that reflect the interplay of statistical and geometrical 
correlations and serve to test the validity of Silver's approximation. Results for 
p2h(r,,r2,rf) in FHNC/0 and the test of the validity of the corresponding Silver's 
approximation will be published elsewhere [30]. Further investigations of 
p2h(r,,r2,rf) and n(p,Q) in nuclear matter should take into account realistic, state 
dependent correlations. Some progress in this direction has been made recently by 
Gearhart [31]. A second important direction for future work is the microscopic 
determination of these quantities in finite nuclei. To this end, an extension of the 
local-density-approximation proposed in Refs. [32,33] for the one-body density 
matrix might be developed. 

Acknowledgements 

The research reported in this paper has been supported in part by the Greek 
Secretariat of Research and Development under Contract 360/91 and by the U.S. 
National Science Foundation under Grant No. PHY-9307484. MP thanks the 
Bodossaki Foundation for granting her a scholarship for graduate studies. We 

154 



have benefited from discussions with W. H. Dickhoff, S. Fantoni, G. Orladini, A. 

S. Rinat, M. L. Ristig and M. Traini. 

Appendix 

Graphical representation of the various quantities adapted to a Fermi system 

described by Jastrow-Slater wave function is performed in terms of the Ursell-

Mayer diagrammatic representation [22,34]. The elements of this representation 

consist of root (or external) points, field (or internal) points, direct bonds and 

exchange bonds. 

A root point represents a particle coordinate which is not integrated over 

whereas a field point implies an integration. Bonds representing dynamical and 

statistical correlations join pairs of coordinate points. A dashed-direct (dashed-

wavy) line represents a dynamical direct bond and corresponds to the function 

P{r)-\ (-f(r)-i). A solid line bearing an arrow represents an exchange bond 

and corresponds to the function /(kFr). 

Following the above notation, dd, de and cc type -FQxy(r)'s are of the form: 

dd de ce 
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