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T H E Λ-PARTICLE ORBITS IN H Y P E R N U C L E I A N D OF THE 

C O R R E S P O N D I N G POTENTIAL E N E R G I E S 

G. J. Papadopoulos, C. G. Koutroulos and M. E. Grypeos 

Department of Theoretical Physics, 
Aristotle University of Thessaloniki, Greece 

Abstract 

The root mean square radii of the Λ-particle orbits in hypemuclei are 
calculated semi-analytically for every bound state, using the Dirac equation 
with a scalar potential Us{r) and the fourth component of a vector potential 
Uv{f) in the case of rectangular shapes of these potentials with the same 
radius R.ln addition an analytic expression of the expectation value of the 
corresponding potential energy operator is derived. For the above quantities, 
expressions of the energy eigenvalues in terms of the potential parameters 
are needed and approximate formulae may be used, in certain cases. The 
variation of these quantities with the mass number is also investigated and 
numerical calculations are performed. 

1. I n t r o d u c t i o n 
As is well known, various problems in nuclear and hypernuclear Physics 

are traditionally studied using the Schröndinger equation [1-6]. In the last 
decades,however, a trend has been developed in using also the Dirac equation 
for such studies, [7-16], which has certain advantages. Relativistic effects in 
nuclei and Λ-hypernuclei are known, however, in most cases to be very small. 

In the present paper we follow a phenomenological relativistic treatment 
in order to calculate analytically the root mean square radii of the Λ-particle 
orbits in hypemuclei, for every bound state, assuming that the Λ-nucleus 
potential is made up of an attractive component Us{r) and a repulsive com
ponent £/y(r), both of rectangular shape with the same radius. An analytic 
expression of the expectation value of the Λ-particle potential energy operator 
is also given, for every bound state. In all these calculations the knowledge of 
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the binding energy B^ of the Λ particle in hypernuclei in every bound state 
is needed. A feature of the Dirac eigenvalue problem with such a potential 
is that it can be solved "semi-analytcally". The large and small component 
wave functions are given analytically in terms of the mass of the particle, 
the potential parameters and the energy. The energy eigenvalue, however, 
is given implicitly, that is through the eigenvalue equation which has to be 
solved numerically. Nevertheless, approximate formulae for B^ in terms of 
the potential parameters may be obtained in certain cases, [15]. 

The arrangment of this paper, in which we give our preliminary results 
of the treatment described earlier, is as follows. In the next section, the ba
sic formulae used are exhibited and the derived analytic expressions for the 
above mentioned quantities are given. In the final section, numerical results 
are given and disscussed. 

2. Basic formalism and analytic results 
It is assumed that the average potential between the Λ-particle and the 

nucleus is made up of an attractive scalar relativistic single particle potential 
Us{r) and of a repulsive relativistic single particle potential Uy{r) which is 
the fourth component of a vector potential and that the differential equation 
describing the motion of the Λ-particle in hypernuclei is the Dirac equation 

[câ-p + βμο2 + ßUs{r) + Uv{r)]ip = Εφ (1) 

where α = (αι,ο^,α^), β are the Dirac matrices. E is the total energy (i.e. 
E — — Β A + /ic2, B\ being the binding energy of the Λ-particle) and φ is the 
Dirac four-spinor.( We are using the formalism outlined in refs [8-10]) 

Instead of the potentials Us{r) and Uv{r), the potentials 

U±{r) = Us(r)±Uv(r) (2) 

are used, which are both attractive. We consider the case in which U+(r) 

and U-(r) are rectangular wells having the same radius R and depths D+ 

and ZL, respectively i.e. 

U±(r) = -D±[l-e(r-R)} (3) 

where Θ is the unit step function and R = r0A
lJz . Ac is the mass 

number of the core system. In such a case the generalized Dirac equation 
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with the rectangular well potentials we are discussing may be solved " semi-
analytically", for every bound state [14]. We find it more convenient, how
ever, to express the large and small component wave functions in terms of 
the spherical Bessel ji and the spherical MacDonald functions ki instead of 
the spherical Hankel functions. The expressions of G and F may then be 
written: 

G(r) = Nnr [1 - Θ ( Γ - R)]ji(nr) + 0 ( r - R) J ' ( w i * \ k(n0r) (4) 

F{r) = Nnch[[l - Θ{τ - R)]-

1 

1 

+ 0 ( r - A ) · 

BA + 2/zc2 - D 

Ji{nR) 

ki(n0R) 

[nrjj_i(nr) + (k - l)ji{nr)] 

BA + 2/zc2 ki(n0R) 

while the energy eigenvalue equation becomes 

[-norfc/_i(n0r) + (k — l)ki(n0r)] (5) 

1 -
D-

2/ic2 - BA 

n0Rki-i(n0R) (k — l)D- nRji-\{nR) 

ki(n0R) 2/zc2 - ΒA 
+ ji(nR) 

In these expressions the quantities η and n0 are defined as follows: 

n 0 = "^[Β^Ι-Β^μο2)-1))} 

(6) 

(7) 

(8) 

The quantum numbers in G, F,B\ and Ν have been suppressed. 
The normalization constant Ν is calculated using the following normal

ization condition 
ΓΟΟ 

[G\r) + F\r)]dr = 1 (9) J 
After using the expressions for the radial components G(r) and F(r) of the 
wavefunction, which were given above, we find for the normalization constant 
the following formula 

N = Ì{P^B) Yk<-i(noR)ki+1(n0R) - y j / - i ( n J Q j / + 1 ( n Ä ) + 
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c2h2

 r n2R3 . , D . . . m 

(2μα2-ΒΛ-ΰ-)2 

n2R3 .„ , „N ( * - 0 2 „ . 2 , „M 

— ü i M - VTI ^( )1+ 

c2fc2 j f tni?) r n
2 i? 3 

(2μο2 - ΒΛ)
2 kf(n0Ry 2 

fc/_2(n0i?)A;i(noJ?)— 

Ç *f-.("oÄ) + ̂ f Äi?(n„Ä)]}-'/J (10) 

It is interesting to note tha t the normalization constant in the non-relativistic 
limit, that is omitting terms of the order ( / ic 2 ) - 1 and higher reduces to the 
expression 

Nnr = l^l^^k^noR)k^i(noR) - jw(nÄ)j,+1(nÄ)]- l 'a (11) 

given by Sitenko [17] for the nonrelativistic square well case. 
The root mean square radii of the Λ-particle orbits in hypernuclei for 

every bound state are obtained by means of the expression 

< r 2 > l'2={ r2[G2(r) + F2{r))dr}1/2 (12) 
Jo 

since G and F are normalized, by means of condition (9). Calculating the 
above integral,(using expression (10) for the normalization constant), the 
following lengthy formula for < r2 >ll2 is derived: 

< r2 >^= 3 ^ { ( 2 / VJS " 1 } (-ii-i(nR)MnR) + (l/2)j?(nÄ))+ 

((l/2)(ii-i(nÄ) - ji+i(nÄ)) - ^ f ) 2 + 

2n2#2 

2/zc2(l - {ΒΑ/2μο2) - (D_/2/xc2)) 

(-j,-a(nÄ)j,(nÄ) + (l/2)j2_1(nÄ))f 
.(2/ + l ) ( 2 / - 3 ) / ; , _ m . . , _ m , / ( / m ; 2 

ji-x(nR) 2 ;2 
( ( l /2)Ü/-2(nÄ) - j , ( n Ä ) ) - J - ^ — ^ ) 2 + j ?_ 1 (nÄ)+ 
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3-iLJ}l(-jl_l(nR)jl+1(nR) + JÎ(nR))+ 

3(Ar - /) 
An2R? 

[(2m)(ji.2{nR)-3l{nR))2+ 

( 4 - ( 2 / - : £ / + 1 ))(2/-ΐ)^Μ)]Η 

föIfiü^^(^-1(n^^1(noÄ)+(1/2)*<2(no*))+ 

((l/2)(*/-

£ Λ jf(nÄ) .(2/+ 1)(2/-3) 

((l /2)(fc,-iM) + *l+1(noÄ)) + M ! ^ ) ) 2 ] + 

2/zc2(l - {BA/2ßc2)) kf{n0R)L 2n2Ä2 (-fc/_2(n0Ä)fc/(noi2)+ 

(1/2)*?.! (noÄ)) + ((l/2)(*,-a(noÄ) + fc,(n0Ä)) + ^ ^ Γ ^ " 

2 , o \ ! ^(™ _) iL· l~ D\L· („ 0\ L2/ 

n2

0R? 
Äi_1(n0Ä) H 9 η, (fcf-i(n0R)ki+i(n0R) - kj (n0R))-

n 
3(Jfc — / ) , 

4n2#2 [(2/ + l)(fc,_2(n0Ä) + kinoR))'-

( 4 + ( 2 / - l ) ( 2 / + l ) ) ( 2 / _ 1 ) f c 2 _ i ( n o / ? ) ] ] } 1 / 2 

{ lUmk<-i ("oÄ)*/+i (noi?) - ji-i (nÄ)j/+1 (nÄ)+ 

D+ ~ iÌA [-ji-2(nR)ji(nR)+ 
2μ*(1 - (BK/2ßc*) - (Ό./2μοη) 

:2 ,„m ( ^ - 0 2 2 -

2/zc2(l - {ΒΑ/2μοη) kf{n0R) 
[ki-2(n0R)ki(n0R) — kf_l(n0R)+ 

(fe-/)a2fc?KR) 1 / 2 

2/ + 1 n2Ä2 J> t") 
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In view of the complexity of the above expression, approximate formulae 
for the root mean square radii of the Λ-particle orbits in hypernuclei for every 
bound state were obtained by using the following asymptotic forms for the 
spherical Bessel and MacDonald functions 

jt(x) ~ -cos{x - (1/2)(Z + 1)π), (14α) 
χ 

jfc/(a.) ~ _î!^.*e-(*+(i/a)ihr+«/a)ir) (146) 
χ 2 

One of these expressions is 

If we set 
φ = arccot— (16) 

η 

and write i ? a s a function of Ac in the first term, we have 

< r2 ^ / 2 ~ Γ ο Λ ' / 3 + — i 1 sin(2nR-h + ip) 
~ 3!/2 " Γ 2 η 0 3 1 / 2 2Π031/2 szn<̂ > V ; 

Observing that the ratio 

sin(2nR — Ιπ + φ) 

sirup 
(18) 

can be approximated by a constant Cjv/, (where Ν is the principal quantum 
number Ν = 1,2,...), one obtains the simple approximate formula 

< r2 > 1 / 2 ~ -^-A1'3 + ( 1 ~ °Nl) (1Q\ 
< r > ~V/2Ac + 2 n o 3 l /2 i 1 9 ) 

for the lower bound states. From this formula one can deduce immediately 
the almost linear behaviour of the curves < r 2 > 1 / 2 versus AlJz for the heavier 
hypernuclei. (We note by, that in the above formula if / = 0 , Cu = —1.2. If 
/ = 1, Cu = -1.4, e.t.c.) 

Another approximate expression which may be derived from (15) is the 
following 
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eh r^-i/2/- · /toy. ,3π /7Γ ,Ιπ 

;[ΒΑ

ί/2(1 + sin(-) + ( — - - + l*)coa{T)· 2(31/2)(2/xc2)1/21 Λ ν ' ν 4 / ν 2 4 ' Μ 

(D+ - Β Λ Γ 1 / 2 ( ( | - J + !*)«»(£) - «w(£)(l + iL))] (20) 

For the ground state (/ = 0) all the expressions for the root mean square 
radii go over to those given in ref [16]. 

We have calculated also the potential energy of the Λ-particle in every 
bound state.The potential energy operator is of the form 

V(r)=ßUs{r) + Uv(r) (21) 

The expectation value of V(r) for the rectangular potentials considered here 
is „ 

< ^ ( Γ ) > _ fS°[G>{r) + F'(r)]dr ( 2 2 ) 

Using the normalization condition and the normalization constant we find 
for the potential energy the expression 

< V(r) >= {-D+l-ji-t(nR)jl+l{nR) + j2(nÄ)]+ 

D+-BA 
D. 

2μο2{\ - (5A/2/ic2) - (D_/2/ic2)) 

HUnR)ji(nR)+jUnR) - iLJl-^jf(nR)]}. 

{4r^ki-i(noR)ki+1(n0R) - j,-i(nÄ)j,+1(nÄ)+ 

D+-BA 

2/xc2(l - (ΒΑ/2μο2) - (IL/2/zc2)) 

BA jf(nR) 

HUnR)ji(nR)+jUnR) - &^J^jf(nR)]+ 

2μο*{1 - {ΒΑ/2με2)) kf{n0R) 
\2 

[ki-.2{noR)ki(n0R) — fc/_1(n0Ä)+ 

IÌTTÌ?^™-1 W 
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In the non-relativistic limit the above expression goes over to the expression 

< V(r) > = -Z>+ + {£+ + j , (nÄ)( ^ - ^ 1)}· 

{ji-x{nR)ji+1{nR) + j , (ni?) ^ } (24) 

From expression (23) one can obtain also the following simple approximate 
expression for the potential energy. 

< V(r) > ~ -D+ + {D+ - £>_)(£>+ - ΒΑ){2μο2 - 2BA - D- + D+)~l (25) 

This is expected to hold, however, for very large values of Ac (and lower 
states). 

3. Numerical results and comments 
In this section we present our results concerning the root mean square 

radii of the Λ-particle orbits in hypernuclei and also its potential energy. 
These results were obtained using the expressions (13), (15), (23), and the 
following potential parameters 

D_ = 300MeV , D+ = 25.74MeV, r0 = 1.22/m 

derived from an "overall fitting" that is a least squares fitting to the exper
imental binding energies Be

K

x of all states of a number of hypernuclei. In 
the above fitting the potential parameter D- was kept fixed to the value 
£L = 300MeV(see ref [14] ) . 

The results for the root mean square radii of the Λ-particle orbits in its 
ground and excited states are given in tables I and 77, respectively. In table 

I the results derived with the exact expression (13) are given while in table 
II those derived with the approximate expression (15). (Note that in table 
II only the lower states are tabulated.) 

The results for the potential energy of the Λ-particle in all bound states, 
calculated using the exact expression (23) are given in table III . It is seen 
that the variation of < V(r) > with Ac is increasing, as expected. 

In figure 1 the results given in table I (i.e the < r\ >1/2) are plotted 
versus A]'3. It is interesting to note that the behaviour is rather similar to 
that reported in ref. [3]. The almost linear behaviour of the curves < r\ > 1 ' 2 
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versus Λ^3, for the heavier hypernuclei, is fairly well understood on the basis 
of expression (19) which predicts such a behaviour for large Ac. 

The main advantage of the rectangular potential used is the possibility 
of solving the corresponding eigenvalue problem semi-analytically. This fa
cilitates the analysis carried out and gives rise to fairly simple approximate 
analytic expressions of the quantities discussed, as function of the mass num
ber. 
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Table I 

Root mean square radii < r 2 > ^ 2 of the Λ-particle orbits in the ground 

and excited states for various hypernuclei obtained numerically using the defi

nition (expression (13)). The potential parameters used are r 0 = 1.22 fm , D+ = 

25.74 MeV ,D- = 300 MeV. 

Ac 

8 
10 
11 

12 

15 
27 

31 
39 
50 

88 
137 

207 

Sl/2 

fm 
2.27 

2.27 

2.28 

2.30 

2.35 
2.61 
2.68 

2.83 
3.00 

3.46 

3.90 

4.39 

P3/2 

fm 

3.44 
3.20 
3.26 
3.38 
3.54 

4.04 

4.54 

5.08 

Pl/2 

fm 

3.96 
3.17 
3.22 

3.33 
3.50 

4.00 

4.49 
5.04 

^5/2 

fm 

4.06 

4.05 
4.47 

4.97 
5.54 

d-3/2 

fm 

4.26 
4.02 

4.40 

4.90 

5.48 

Λ/2 

fm 

4.9 
5.32 

5.89 

h/2 
fm 

4.86 
5.24 

5.81 
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Table II 

Root mean square radii < r 2 > 1 / 2 of the Λ-particle orbits in the ground 

and first excited states for various hypernuclei obtained using the approxi

mate expression (15). The potential parameters used are the same as in table 

Ac 

8 
10 
11 
12 
15 
27 
31 
39 
50 
88 
137 
207 

«1/2 

fm 
2.38 
2.40 
2.42 
2.44 
2.51 
2.80 
2.89 
3.05 
3.24 
3.75 
4.23 
4.75 

P3/2 

fm 

3.56 
3.12 
3.16 
3.28 
3.44 
4.93 
4.42 
4.96 

Pl/2 

fm 

4.40 
3.16 
3.18 
3.28 
3.43 
3.92 
4.41 
4.95 



Table III 

Potential energy < V > of the Λ-particle in the ground and excited states 
for various hypernuclei obtained from expression (23).The parameters used 
are the same as in table /. 

Ac 

8 
10 
11 
12 
15 
27 
31 
39 
50 
88 
137 
207 

«1/2 

MeV 
-17.44 
-18.82 
-19.32 
-19.75 
-20.70 
-22.64 
-22.81 
-23.26 
-23.67 
-24.35 
-24.72 
-24.98 

PS/2 

MeV 

-13.46 
-18.66 
-19.42 
-20.47 
-21.38 
-22.87 
-23.65 
-24.18 

Pl/2 

MeV 

-11.03 
-17.91 
-18.81 
-20.03 
-21.07 
-22.72 
-23.57 
-24.13 

dh/2 

MeV 

-15.89 
-18.02 
-20.88 
-22.26 
-23.16 

dz/2 
MeV 

-14.14 
-17.04 
-20.47 
-22.03 
-23.02 

Λ/2 
MeV 

-18.11 
-20.48 
-21.9 

/δ/2 

MeV 

-17.12 
-19.99 
-21.62 
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