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N u c l e a r s tructure d e p e n d e n c e of t h e coherent (μ ,e ) conversion matr ix 

e lements * 

T. S. Kosmas 1 ' 2, Amand Faessler2, F. Simkovic2 and J. D. Vergados1 

Division of Theoretical Physics. University of Ioannina, GR-451 10 Ioannina, Greece 

Institut für Theoretische Physik, Universität Tübingen, D-72076 Tübingen, Germany 

Abstract 

Coherent rates for the neutrinoless muon to electron conversion. ( μ " . £ ~ ) tn the presence of 

nuclei, are studied throughout the periodic table. The relevant ground state to ground state 

transition matrix elements are obtained in the context of the quasi-particle RPA. The results 

are discussed in view of the existing experimental data extracted at TRW MF and PSI for 
48Ti and 208Pb nuclei and compared with: (i) the single particle shell model results calculated 

with a determinantal ground statt wave function and (ii) the results deduced in a local density 

approximation. 

1. Introduct ion 

The neutrinoless muon to electron conversion in the field of a nucleus, represented by the 

reaction 

μ- + {A, Ζ)-* e- + {Α. Ζ)' (1) 

is forbidden in the Standard Model by lepton flavor conservation and plays an important 

role in the study of the muon number violation [l]-[6]. Within the last decade, experiments 

at T R I U M F and PSI aiming to search for μ — e conversion electrons have mainly employed 
48Ti as target but up to now they have not measured any event. Instead, for the upper limit 

on the branching ratio 

η . Π μ - . Ο 
Λ£.γ — 

Γ ( μ ,ι/β) 

the two independent experiments have obtained about the same value, i.e. at T R I U M F [7] 

Presented by T. S. Kosmas 
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ReN < 4.6 χ IO" 1 2 . (90% Confidence Level) (3) 

and at PSI [8] 

ReN < 4.9 χ 1 0 - 1 2 , (90% Confidence Level) (4) 

The experimental sensitivity is expected to be further improved by two to three orders of 

magnitude by on going experiments at PSI· (to 1 0 " H ) [S], at T R I U M F (to 1 0 - U ) [7] and at 

INS (to 10~14 — 1 0 - 1 6 ) [9]. The most interesting result of these experiments would be not a 

new upper limit but some events of ( μ ' , ε - ) which will signal the break down of the muon 

number conservation and will reveal "new physics mechanisms"' [3,5] beyond the Standard 

Model. For a demonstration of the motivation for the present work we would go through a 

brief historical review of the heroic experimental efforts to observe events of process (1) and 

of the development of the theoretical background for the (μ~.β~) conversion. 

Very early the first experiments by Steinberger and Wolfe [10] using Cu as target found 

for the branching ratio Re^ the upper limit Re^ < 1 0 - 4 . Some years later two simultaneous 

experiments by Conversi et al. [11] using also Cu reduced the upper limit to Reiv < 5 χ IO - ' 3 

and ReN < 5 x 1 0 - 6 , respectively. Using the same target one decade later Bryman et al. 

[12] improved the branching ratio to Re^ < 1.6 x 10~8. Experiments with targets different 

than Cu, have been performed on sulphar 32S by Baderctsher et al. [13] (i?e/v < 7 χ I O - 1 1 ) 

and recently at TRIUMF on 208Pb [7] (ReN < 4.9 χ I O - 1 0 , value obtained from preliminary 

results). 

On the theoretical side the basic background for the (μ~, e~) conversion has been set by 

Weinberg and Feinberg [1] who assumed that this process is mediated by virtual photons. 

Non-photonic contributions have been included later on (see ref. [3] and references therein) 

in the post gauge theory era. An interesting feature of the (μ~.ε~) conversion process is 

the possibility of the ground state to ground state transitions. The strength of this channel 

appears enhanced because of the coherent contribution of all nucléons of the participating 

nucleus. Weinberg and Feinberg [1] estimated that, the coherent channel dominates the 

(μ~,β~) conversion process and that in the region of Cu the coherent rate is at least six 

times bigger than the incoherent one. This is the reason why the study of the coherent rate 

met a good priority by the authors investigating the (μ~.β~) conversion rates and why the 

majority of experiments were performed on targets around Cu. 

Calculations of the coherent rate have been performed in terms of the nuclear form factors 

[2,3,14] in the framework of gauge theories. For the incoherent rate the first calculations were 

done only recently [15,4] in nuclei with closed shells or subshells throughout the periodic table 

by employing shell model sum-rules i.e by assuming closure approximation and using a single 

Slater determinant for the initial (ground) state. These shell model results showed that the 

coherent channel dominates the (μ"~, e") process for light and medium nuclei but in the region 

of 2 0 8 P 6 , a great part of the rate goes to other inelastic channels. Also the dependence of 

the branching ratio Re^ on the nuclear mass .4 and charge Ζ showed a maximum around 

A ~ 100 in agreement with the estimates of ref. [1], 

Recent studies of the coherent and incoherent μ — e conversion with two independent 

methods [16,17] provided us with new interesting information. In the first method [16] the 

local density approximation with a Lindhard function for the description of the elementary 

processes μ~ρ —• e~p and μ~η —> e~n was employed. The incoherent rate in this method 

was obtained by integrating over the excited states of a local Fermi sea. These results 

veryfied the estimates of Weinberg and Feinberg by showing that, the coherent contribution 



ΔΧ.Ι 

is dominant for all nuclei of the periodic table, but they have shown that the branching ratio 

jRejv becomes maximum in the region of 2 0 8 P 6 and not in the region of Cu. 

In the second study [17] the quasi-particle RPA (QRPA) was employed for explicit cal­

culations of the final nuclear states entering the total (coherent and incoherent) rate. One 

of the advantages of this method is the possibility of calculating the mean excitation en­

ergy of the studied nucleus and thus checking the results of closure approximation which 

are sensitive to this property. An important result of the QRPA study [17] was that, in 

the (μ~,ε~) process the mean excitation energy of the nucleus is very small, E « 2MeV 

for 4 8 T i , and differs appreciably from that of (μ~,//μ) reaction, E % 20MeV, which had 

been used in shell model calculations [4]. This is mainly due to the fact that, the coherent 

channel is not possible in the latter process while in the (p~.e~) this is the dominant one. 

The quasi-particle RPA results shown also that the coherent rate for 48Ti is dominant. 

The above discrepancies motivate a detailed study of all possible channels of the ( μ - , e~) 

conversion for medium and heavy nuclei and in particular for nuclei around 208Pb. In the 

present work we have done quasi-particle RPA calculations of the coherent (μ~,ε~) conver­

sion rate while detailed calculations for the incoherent channels with the same method are 

in progress and will appear elsewhere [18]. 

In the set of isotopes we have chosen for study in the present work (see below table 1) we 

have included 48Ti and 2 0 S P o for which recent experimental data exist for the upper limit 

on the branching ratio Re^· [7,8]. In the QRPA method nuclei with closed shells, like 60A^z 

and 2 0 8 P 6 , need a special treatment in order to determine the pairing parameters for protons 

idpair) a n d neutrons (g^air)- In this work we follow the manner used recently in the double 

beta decay [19]. 

2. Brief description of t h e formalism for t h e coherent (μ~,β~) process 

The operator involved in the relevant nuclear matrix elements needed for the ( μ _ , ε ~ ) 

conversion rates has been described in detail in refs. [3.4.6]. Here we only give the non-

relativistic expressions of the multipole expansion for the two components of this operator, 

i.e. the spin independent component (vector part) 

.4 

TÜ0)J = gvSu ^ £ ( 3 + ßr^jiiqr^iri) (5) 

and the spin-dependent component (axial vector part) 

TM'1]J = 9Αΐ]γ ZU + ß^)Mqri)[Y'(h)^i]J
M (6) 

The summation in eqs. (5) and (6) runs over all nucléons of the considered nucleus (impulse 

approximation). The parameters gv, g A and β depend on the assumed mechanism for lepton 

flavor violation [3,6] and take the values 

gv = —. g.\ = 0. 3 = 3 (phoioitlc cast) (7) 
6 

gv = (JA = τ;- ξ = fv/f.A: fv - 1- IA = 1--4 (non -photonic case) (8) 

For the non-photonic case discussed in the present work, 3 = 5/6. In eqs. (5) and (6) ji(qr) 

are the spherical Bessel functions with q representing the magnitude of the momentum 



transferred to the nucleus. In a good approximation q is equal to the magnitude of the 

momentum of the outgoing electron i.e. 

q % mß - th -{Ej - Egs) (9) 

where Ef, Egs are the energies of the final and ground state of the nucleus, respectively, mM 

is the muon mass and £/, the muon binding energy. 

In the case of the coherent process (Ej, = £ , ) , i.e. ground state to ground state (0+ —*• 
0+) transitions, only the vector component of the (μ~,β~) operator contributes and the 

corresponding rate is proportional to the muon-nuclear overlap 

|< / | il{q) | ι,μ >\2 = g2

v (3 + fvß)2 [Èp(q
2) + IzAlfrtf)]2 (10) 

L i + JVP J 

where Ω is the responsible ( μ " , e " ) operator and 

FPM) = [d^ Pp,nW e - t q , x Φ μ (χ) ( H ) 

In the latter definition, p p (x), />n(x) represent the proton, neutron densities normalized to 

Ζ and N, respectively and Φ μ (χ) is the muon wave function. If we assume that the muon 

is at rest in the Is atomic orbit and that its wave function varies a little inside nuclei (for 

light and medium nuclei this is a good approximation), we can factorize an average value 

< Φχ3 > of the muon wave function in eq. (11) and write 

FP(q2) ~ < Φι, > ZFz(q2). Fn(q2) ~ < Φι, > /VFv(ç2) (12) 

with Fz {Εμ) the proton (neutron) nuclear form factors defined as 

Fz[q2) = ~ J' d3xpp(x)e-'*\ EN(q2) = ^ J <Ρχρη{χ)β~** 13) 

In the above approximation the nuclear part of the coherent rate, is analogous to the 

matrix element 

M2M2)= Z2Fz(q2) 1 + 
3 - A - J λ' Fy(q 

14; 
3+fvß Ζ Ez((?] 

Thus, the nuclear structure dependence of the coherent (//~,e~) conversion rate can be 

studied by calculating the matrix elements M2

s_gs of eq. (14) throughout the periodic 

table. In the photonic case only the protons of the considered nucleus contribute and the 

nuclear matrix element becomes Z2Fz(q2). 

In the present work the nuclear form factors Fz{q2) and F^(q2) are calculated by using 

quasi-particle RPA (see sect. 3 below) and compared with previous shell model results. 

3. Coherent (μ~.ε~) conversion matrix e lements 

The nuclear form factors involved in eq. (14) can either be obtained directly from exper­

iment whenever possible [20] or be calculated by using various models as shell model [14], 

quasi-particle RPA [17] etc. For spherical nuclei in the Born approximation the point-proton 

(-neutron) nuclear form factors are given by 
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Fr(q2) = - Σ " 1 (2j + 1) < k | io(gr) μ >, r = Ζ, TV (15) 

where <xj are the occupation probabilities of the single particle states | k > included in the 

used model space, k = (n, /, j). In the next subsections we describe in brief two methods of 

calculation of the nuclear form factors based on: (i) the shell model and (ii) the quasi-particle 

RPA. 

A. Shell model form factors with fractional occupat ion probabi l i t ies 

In the independent particle shell model, which is more appropriate for closed shell nuclei, 

the occupation probabilities aT

k in eq. (15) are zero for unoccupied states and unity for 

occupied states. For open-shell spherical nuclei or closed-shell spherical nuclei with diffused 

surfaces, the quantities a£ are generally fractional numbers. If one uses harmonic oscillator 

wave functions, the point-nucleon form factors Fz and F μ can be cast in compact analytical 

formulas as [21] 

ι . '-«pace 

Fr{q2) = -e"1'6»2/4 Σ θΙ(Φ)2λ- τ = Ζ, Ν (16) 

where 6 is the harmonic oscillator parameter, Nspace represents the maximum harmonic 

oscillator quanta included in the model space used and θ\ the coefficients 

θχ = ^ a^ 9 I > + / + 2 ) ( 1 7 ) 

{n.l)j. \>l " M T ' T 2 ' 

In eq. Γ(χ) is the known gamma function and 

" " £ " U m - «)! { η-κ ){n + K-m) ( 1 8 ) 

In the case of the independent particle shell model, the coefficients θ\ are the rational 

numbers of table 2 ref. [21]. We should mention that a similar expression to that of eq. (17) 

is also obtained if one takes into account Gausian-type corrections in the point-nucleon form 

factors due to the nucléon finite size and center of mass motion of the nucleus (see ref. [21]). 

B. Quasi-particle R P A Calculation 

In the context of quasi-particle RPA, the form factors Fz and Fs can be obtained by 

using as nuclear ground state either an uncorrected vacuum or a correlated vacuum. The 

uncorrelated vacuum can be a BCS type vacuum or a Hartree - Fock - Bogolyubov (HFB) 

vacuum. In the majority of QRPA studies the considered BCS ground state contained only 

proton - proton and neutron - neutron pairing correlations. The proton - neutron pairing 

correlations could be included in the framework of the Hartree - Fock - Bogolyubov (HFB) 

theory. Recently, the QRPA theory has been extended so as the proton - neutron pairing to 

be taken into account by using a HFB ground state. Such a QRPA teatment of the nuclear 

double beta decay process, for example, indicates that the effect of proton - neutron pairing 

is significant [22,23]. 

In the present work, however, we consider the proton-neutron pairing to be negligible for 

the ( μ - , e~) conversion and we shall use a BCS ground state. In this case, Fz and F^ are 
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calculated from eq. (15) by replacing the occupation probabilities a\ with the quantities 

(Vf) (for protons) and (VjN) (for neutrons), where Vf, Vf are the amplitudes for the 

proton, neutron single particle states to be occupied which are determined by solving the 

BCS equations. 

Since, as is well known, the QRPA ground state takes into account the short range 

nucleon-nucleon correlations, the effect of which has recently been proved to be very impor­

tant [17], in the present work we will study the effect of these correlations on the coherent 

(μ~,e~) matrix elements. The short range nucléon - nucléon correlations can be included in 

the ground state by defining the correlated QRPA vacuum | 0 > in terms of the uncorrelated 

vacuum | 0 > as [24]-[27] 

| Ö > = .<Voe^+ |0> (19) 

where ΛΌ is a normalization constant and S+ the operator 

S+ = l- Σ ( - D J - U Ci At [J M) AJ(J - M) (20) 
- ij,JM 

The operators Af(JM) denote the two quasi-particle creation operators in the angular 

momentum coupled representation. The indices ι and j run over those two - quasiparticle 

configurations of the chosen model space which are coupled to a given J. The correlation 

matrix CJ (symmetric matrix) is constructed for each angular momentum ./ from the XJ 

and YJ matrices, i.e. from the QRPA amplitudes for forward and backward excitation. A 

first order approximation for CJ is the following [25] 

Ci = (YJ[xJ]-\ (21) 

Then, by keeping first order terms for the correlation matrix C in eq. (19). the normalization 

constant N0 is given by 

-γο = [ ι + ϊ Σ K i l T 1 e 2 2 ) 
- ij,J 

By using the correlated QRPA vacuum of eq. (19), the coherent rate matrix elements could 

be approximated in the form 

< 0 | Γ | 0 > = / ν ο

2 < 0 | Γ | 0 > (23) 

This means that the correlated matrix elements are a rescaling of the uncorrelated ones. 

4. Results and Discussion 

In the present work we have calculated the matrix elements M'*s of eq. (14) for 

the coherent (μ~,ε~) conversion rate in the context of quasi-particle RPA. We have used 

harmonic oscillator wave functions to compute the elastic nuclear form factors (Fz and 

FN) entering eq. (14) for the nuclei 48Ti. *°Ni, 72Ge, lv2Cd. lii2Yb and -osPb. In the BCS 

description of the uncorrelated ground state, the single particle energies have been calculated 

from a Coulomb - corrected Wood - Saxon potential with spin - orbit coupling. The G -

matrix elements of the realistic Bonn one - boson exchange potential have been considered. 

The values of pairing parameters gp

paiT and g^air renormalizing the proton and neutron pairing 
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channels in the G - matrix have been deduced by comparing the quasiparticle energies with 

experimental pairing gaps as described in ref. [28]. Since, $§M is a closed-shell (for protons) 

nucleus and ™Pb is double closed-shell nucleus, their pairing parameters have been deduced 

from the neighbouring nuclei ™Fe and l°4

8Po, respectively, in analogy to that done in nuclear 

double beta decay of 48Ca [19]. The model space, the harmonic oscillator size parameters 

and the pairing parameters g%atr, g£air used for each studied nucleus are shown in table 1. 

The proton, Fz{q2), and neutron, FN(q2) nuclear form factors obtained in the way de­

scribed in sect. 2, are listed in table 2. We distinquished the following two cases of the 

momentum transferred to the nucleus: (i) by neglecting the muon binding energy eb the 

elastic value of the momentum transfer is the same for all nuclei i.e. q % ιημ « .535/ra - 1 

(in table 2 these results are labeled as QRPA(i)). (ii) by taking into account eb the elastic 

momentum transfer is equal t o c « τημ - eb and varies from q « , 5 2 9 / m - 1 (for 4STi, where 

eb « l.SMeV) to q « .482/m" 1 (for 2 0 8Pò, where eb « 10.5MeV). In table 2 these results 

are labeled as QRPA(i). In this way, we can test the approximation of neglecting the muon 

binding in the calculation of the ground state to ground state transition matrix elements. We 

recall that the shell model results of ref. [4] were obtained with qe! = .535fm~ l throughout 

the periodic table, i.e. they correspond to QRPA(i) case. 

By comparing the QRPA(i) form factors with the shell model ones we see that the two 

methods give about the same results. However, the form factors of QRPA(ii) for heavy nuclei 

differ appreciably from those of QRPA(i) and shell model ones. For 2 0 8 Pò, for example, the 

QRPA(ii) form factors are about 30% larger than the corresponding QRPA(i) and shell 

model results. This is because et makes the momentum transfer to the nucleus smaller and 

consequently the form factors bigger. The larger eb (lead region) the bigger form factor. 

T a b l e 1. Renormalization constants for proton (#£oir) and neutron (g^air) pairing inter­

actions determined from the experimental proton (Δρ ΐ ρ ) and neutron ( Δ " ρ ) pairing gaps. 

Nucleus 

22-* l26 

6 0 Λ/V 2 8 i V Z 3 2 

32Ge4o 

112/-ÏJ 
48 (-/<264 

162 Vh 70 ì "92 

208 p i 
82 ^ " 1 2 6 

Configuration Space 

16 levels (no core) 

16 levels (no core) 

16 levels (no core) 

16 levels (core ^Οα2ο) 

23 levels (core 2o^'a2o) 

18 levels (core £g°5nSÜ) 

bhoif™-1) 

1.92 

2.02 

2.07 

2.21 

2.32 

2,10 

Xxp{MeV) 

1.896 

1.718a 

1.611 

1.506 

1.170 

0.807° 

Xxp{MeV) 

1.564 

1.395° 

1.835 

1.331 

1.104 

0.61Γ 

qv 

1.082 

1.033 

0.924 

1.099 

0.894 

0.861 

qn 

jpatr 

1.002 

0.901 

0.995 

0.950 

0.951 

1.042 

a For the closed shell nuclei the parameters gv

p(lir and g"}a)r have been borrowed from the 

{N ± 2, Ζ ψ 2) nuclei i.e. the experimental gaps (columns 4 and 5) for fgA''?^ and l^Pb^e, 

are those of\lFeM andffPoU4, respectively. 
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Table 2. Nuclear form factors for protons (Fz) and neutrons (Fjv) calculated in the 
context of the shell model and quasi-particle RPA. The two cases of the quasi-particle RPA 
results refer to momentum transfer: (i) q = mM for all nuclei (columns labeled QRPA(i)) 
and (ii) q = τημ - eb which depend on the considered nucleus (columns labeled QRPA(i)). 

Nucleus 

(A.Z) 

48Ti 
2 2 1 *26 

6 0 Ni 28 i V Z 32 

7 2 Γ* 3 2 L j e 4 0 

112/^J 
48 ° α 6 4 

70 ^"^92 

208 DL 
82 ~°126 

Shell Model 

bkoifm-1) Fz Fv 

1.906 .543 .528 

1.979 .489 .478 

2.040 .470 .448 

2.202 .356 .318 

2.335 .261 .208 

2.434 .194 .139 

QRPA (i) 

Fz Fy 

.528 .506 

.489 .476 

.456 .435 

.349 .312 

.252 .218 

.207 .151 

QRPA (ii) 

tb (MeV) Fz FN 

1.250 .537 .514 

1.950 .503 .490 

2.150 .472 .451 

4.S90 .388 .352 

7.500 .314 .280 

10.475 .294 .236 

Table 3. Coherent (μ , e ) conversion matrix elements calculated in the context of shell 
model and quasi-particle RPA. See caption of table 2. 

Nucleus 

(A,Z) 

22-^26 

f8Ni32 

3 2 Ge40 

48 u a 6 4 

162 Λ/Α 
70 ì °92 

208 p i . 
82 " °126 

Photonic VIechanism (β = 3) 

Shell Model QRPA (i) QRPA (ii) 

142.7 135.2 139.6 

187.5 187.8 198.7 

212.9 212.7 227.8 

274.2 280.0 346.7 

313.6 311.0 484.3 

240.2 287.5 582.9 

Non-Photonic Mechanism {β = 5/6) 

Shell Model QRPA (i) QRPA (ii) 

374.3 363.2 375.2 

499.6 498.2 527.4 

595.8 596.2 639.5 

769.4 785.8 983.3 

796.0 S40.3 1412.1 

631.4 767.5 1674.9 

The nuclear matrix elements given from eq. (14) arp listed in table S. We see that 
the coherent matrix elements show the following characteristics: (i) The results obtained 
by neglecting the muon binding energy (cases QRPA(i) and shell model), increase up to 
A % 160 (162yò) where they start to decrease, (ii) By taking into account the muon binding 



energy, case QRPA (ii), the obtained matrix elements become even a factor of 2 bigger in 
the lead region. The latter conclusion is in agreement with ref. [16], where a local density 
approximation was used and ê  was calculated by solving the Schrödinger equation. 

Another important conclusion is the fact tha t , the QRPA(ii) matrix elements {M2
3^gs) 

increase continuously up to lead. In ref. [16] it was found that the coherent matrix elements 
start to decrease around 238U. This means that the coherent rate is bigger for heavy nuclei 
(lead region) and that , from an experimental point of view, one has to employ as heavy 
as possible nuclear targets provided that they also satisfy other additional criteria e.g. the 
minimization of the reaction background etc. In addition the (/z~,e~) conversion electrons 
are expected to show a pronounced peak around Ee = mß — e ,̂ which in lead region is about 
95MeV. The dependence of the branching ratio R£^ of the coherent process on the mass 
number A is shown in fig. 1. 

We should mention that, in the present approach as wel as the one used in ref. [4], we 
use a mean value for the overlap between the muon and nuclear wave function (see eq. (12)). 
This is described by the effective charge Zejf which feels the muon in the Is atomic orbit 
[16.29]. In ref. [16] an exact muon wave function was used for the description of the muon 
- nucleus overlap and found that this approximation is not very reliable in the 20i>Pb region 
and beyond. 

2000 

1500 

00 

\ 

S looo 

500 

ο I I I l l I l I L__J Ι Ι ι ι ι 

0 100 200 300 

A 

Figure 1. Variation of the coherent (/z~,e~) conversion matrix elements (M2

e ) with 

respect to the mass number A for the photonic mechanism (three lower curves) and the 

non-photonic mechanism (three upper curves). Consideration of the muon binding energy 

£6 (QRPA(ii) results) strongly affects the matrix elements for heavy nuclei. For comparison 

the results of ref. [7] (shell model results) are also shown. 

- · — SM 

-A— QRPA(i) 

-O— QRPA(ii) 

-m— SM 

- Δ - QRPA(i) 

Η — QRPA(ii) 
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We must also recall that, contrary to the present calculations, the shell model results of 

ref. [4] take into account the finite nucléon size by folding the nuclear point-density with 

a Gaussian proton (neutron) density distribution. This correction reduces the form factors 

by about 5%. However, these results do not include any corrections due to the smearing 

of the Fermi surface but the studied nuclei have been assumed of closed shells, i.e. with 

occupation probabilities zero and one. In the case of quasi-particle RPA. the occupation 

probabilities are fractional numbers for all states included in the model space, namely, they 

are about equal to unity for the inner most'levels and progressively decrease as we go to the 

uppermost levels where they tend to zero. A similar picture in the context of shell model has 

been recently developped [21] by determining the fractional occupation probabilities from 

the elastic scattering form factor data. 

In the present work we have also estimated the effect of the ground state correlations 

on the coherent matrix elements by using a correlated quasi-particle RPA vacuum instead 

of the uncorrelated one, as we have stated in sect. 3B. We found tha t the coherent matrix 

elements obtained by using eq. (22) are about 30 —35% smaller than those of eq. (14) which 

means that the ground state correlations strongly reduce the coherent matrix elements. 

5. Conc lus ions 

In the present work we have studied the dependence of the coherent (μ~. e~) conversion 

matrix elements on the nuclear parameters A and Z. We have employed the quasi-particle 

RPA method to determine the proton and neutron nuclear form factors for a set of six nuclei 

from 4 8JTZ to 208Pb. We found that the coherent rate increase continuously up to the lead 

region. 

We have also investigated the effect of consideration of the muon binding energy in the 

kinematic of the (μ~. e~ ) process and the nucleon-nucleon correlations in the QRPA ground 

state on the μ — e matrix elements. We found that the present result are in good agreement 

with those extracted in the framework of the Local Density Approximation. However, the 

quasi-particle RPA results differ appreciably for heavy nuclei from those obtained in the 

context of the shell model. 

One of us (T.S.K.) would like to acknowledge the hospitality of the Institute of Theoretical 

Physics, of the University of Tübingen. 
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