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Nuclear distributions, rms radii and form factors 

with the harmonic oscillator shell model 

T. S. Kosmas and J. D. Vergados 

Division of Theoretical Physics, the University of loannina, GR. 451 10 loannina, Greece 

ABSTRACT : General expressions for calculating nuclear distributions (proton, 
charge, matter and momentum), mean radii and nuclear form factors are derived by 
extending recent related works. They are based either on the simple harmonic oscillator 
shell model or on its modification in which fractional occupation probabilities of the 
surface orbits are used to fit the experimental elastic electron scattering data. The 
method is applied to the spherical nucleus 4(Ca and the values of Jthe partial occupation 
probabilities are compared with those determined from experimental reaction data. 

1. INTRODUCTION 

The distributions of the nuclear charge, momentum and nuclear matter are among 
the most important nuclear properties. The radial charge distribution is now quite well 
known [1-3] from model independent analysis of electron-nucleus scattering data (via 
the nuclear form factors) and very precise measurements of muonic x-ray transitions. 
Also the most accurately known nuclear-size parameter, the root mean square radius 
(rms) of the charge distribution along the valley of maximum stability, is extracted from 
these data. Theoretically, the considered properties are extensively studied [4-15] (the 
weakness of the interaction and the knowledge of the interaction mechanism being the 
most significant reason) by using single-particle potential models [4-7] and other self-
consistent methods [8-10]. During the last decade Jhe momentum distribution has 
received much attention on the theoretical side [9,16]. 

Recently [6,9], the corrections to the single-particle results of the above properties in 
the nuclear ground state, which come from different sorts of correlations, have been 
taken into account by assuming fractional occupation probabilities for the valence 
orbitate in light nuclei [4-6,9] or by including ground state correlations in the closed shell 
configuration of the ground state [11,12]. 

In this work, first we derive expressions for the nuclear distributions and the mean 
square radii similar to those found in ref. [15] for the form factor by using the simple 
harmonic oscillator shell model. Second we generalize the method of ref. [6] and 
calculate the nuclear densities and form factors in the framework of this model by 
assuming however that the surface nucléons of a nucleus are distributed in the valence 
orbitals C'-levels) with probabilities described by adjustable parameters. With this 
method we can choose more than two j-levels. The number of the parameters (in this 
* Presented by T. S. Kosmas. 
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work we use three) depends on the assumed model space and can be determined by 

those bound states for which the experimental data show significant occupancy. Their 

exact values are determined by fitting to the experimental data of the elastic electron 

scattering form factor. The method is applied to the double magic nucleus 4QCa and the 

resulting occupation probabilities are compared with those of ref. [4,5]. 

2. INDEPENDENT PARTICLE FORMALISM 

2.1 Radial charge, matter and momentum distributions 

In the framework of the single particle shell model the density distribution p(r) is 

spherically symmetric for closed (sub)shell nuclei. If we assume that the ground state of 

such a nucleus (A,Z), is adequately described by a Slater determinant constructed from 

single particle wave functions, the proton (neutron) distribution is sirr.piy the sum of the 

squares of the point-proton (neutron) wavefunctions. The more interesting radial proton 

distribution p(r) is simply obtained fry 

PC) = ̂ r n I ( 2 J + 1)|Rnij(0l2 Ο) 

occupied 

where Rnij(r) is the radial part of the single particle wavefunction with quantum numbers 

n, I and j . Using the fact that |Rnij(r)f can be written as the product of e<rlb) times a 

polynomial of even powers in the quantity (r/b) [13,14], where b is the h.o. parameter, 

after some further elaboration eq. (1) can be written in the simple form 

P(r) = ^37^e-(r/b)2n(Z) (2) 

with Π(Ζ) being the polynomial 

"max 
π ( ζ ) = ϋ ί λ Χ 2 λ - x=r/b (3) 

In eq. (3) N m a x is the number of quanta of the highest occupied proton (neutron) level in 

the j-j scheme and the coefficients 1\ are defined by 

' jtJCc., 

ir«2(2j + 1)n!Cft 

λ = ( η . Ι ) ί 4 ί , χ „ 2Γ(η+Ι+*2) «*> 
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where the coefficients CA

nj are given in appendix A of ref. [15]. The usefulness of eq. (2) 

becomes more clear by looking at table 1, which gives the exact values of ίχ for all 

closed (sub)shell nuclei. They are all rational numbers and in the majority they are 

Ζ 

2 

6 

8 

14 

16 

20 

28 

32 

38 

4 0 

5 0 

5 8 

64 

68 

7 0 

8 2 

92 

Highest 
occupied 

j-level 

0s 1 /2 

0p 3 /2 

0p 1 /2 

0d 5 /2 

1S1/2 

0d 3 /2 

0f 7 /2 

1p 3 /2 

0f 5 /2 

1p 1 /2 

0g 9 /2 

0g 7 /2 

1d 5 /2 

1d 3 /2 

2s1/2 

0 h 1 1 / 2 

0h9/2 

λ=0 

2 

2 

2 

2 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

35/4 

35/4 

35/4 

λ=1 

8/3 

4 

4 

0 

0 

0 

20/3 

20/3 

10 

10 

10 

10 

10 

0 

0 

0 

λ=2 

8/5 

44/15 

4 

4 

-4/3 

-4/3 

-4 

-4 

-4 

8/5 

16/3 

14 

14 

14 

λ=3 

64/105 

176/105 

64/3 

8/3 

8/3 

8/3 

-8/15 

-8/3 

-16/3 

-16/3 

-16/3 

λ=4 

32/189 

32/105 

16/21 

16/15 

4/3 

4/3 

4/3 

λ=5 

128/3465 

64/945 

Table 1. The exact coefficients ίλ, which give the proton (neutron) density and momentum 

distributions for all closed (sub)shell nuclei up to 2 0 8 Pb by using expressions (2), (3), (3a) and (4), are 
listed in the form of rational numbers. 

simple numbers. The sequence of the single particle j-levels assumed (second column 
in table 1) is that of ref. [13]. 

It is evident that the determination of the polynomial Π(Ζ) is essential since its 
knowledge is sufficient in order to find the density distribution (1). Up to now Π(Ζ) have 
been explicitly calculated [6,7,16] only for light nuclei. The knowlenge of coefficients 
ίλ(Ζ) (tablel) enables us to write explicit expressions of the form of eq. (2) for all closed 
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(sub)shell nuclei of the periodic table. Thus, in the case of \Zr, for example, we can 

write simply 

PW = --4a {5 + 1 0 © 2 - 4 © 4

+ | © β } β < ^ (3b) 

The same coefficients f x of table 1 can be also used for the calculation of the proton 

(neutron) momentum distribution which is given by the expression (see ref. [17]) 

r|(k) = 8 π 3 ' 2 b3 e-C*)2 Π(Ζ) (4) 

(where k is the momentum transfer). For example, the proton (neutron) momentum 

distribution of 1 6 0 , is written as 

n(k) = 8 π3/2 D3 e-O*)2 { 2 + 4 (k b) } (4a), 

result compatible with that of ref. [16a] p. 50. ( We use the normalization relations of ref. 

[16a] p. 50 separately for protons and neutrons in p(r) and n(k). See also ref. [9] ). 

We should mention that fx(Z) have been derived under the assumption that the 

filling numbers of the states for closed (sub)shell nuclei are those predicted by the 

simple oscillator shell model, namely, 2j+1 for occupied states and zero for unoccupied 

ones. In the present work we shall also see how these coefficients can be helpful in 

order to describe approximately the proton density distribution of all ( closed (sub)shell 

or open (sub)shell ) nuclei with fractional occupation numbers of the surface orbits (see 

section 3 below). 

2.2 Mean radii and root mean square radius 

The mean radial moment of order m for a nucleus is defined as follows 

J*p(r)rm+2dr 

< r m > = J>L· ( 5 ) 

; 
p(r) r2 dr 

The simplified form for the radial distribution p(r), eq. (2), enables us to write eq. (5) after 

integration as 

Km # P X 

(5a) 
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where 

9λ= ( 2 λ + 2 2 λίμ + 1 ) ! ! ' **** a n d qX=2(X+M+1)!, m= 2μ+1 (5b) 

(μ is a positive integer). In the case of the mean square radius (m=2 and μ=1), which is 

one of the more interesting radial moments, eq. (5a) takes the simple form 

< r2> = D 2 
N r 

' x ^ - »2 
Ζ f. 'Λ 2 λ + 1 ~ w Ζ (5°) 

where the sum S for all the closed (sub)shell nuclei is an integer number (see table 2). 

Ζ 

s 
2 

3 

6 

13 

8 

18 

14 

39 

16 

46 

20 

60 

28 

96 

32 

114 

38 

141 

40 

150 

50 

205 

58 

249 

64 

282 

68 

304 

70 

315 

82 

393 

92 

458 

Table 2. The integer numbers S of eq. (5) determining the mean square radii for all closed (sub)shell 

nuclei. 

As examples we find using table 2, the root mean square radius of ^Ca, which is 
<r2>i/2 = D >/3i and that of 90Zr, which is <r2>i/2 =D V3T75. 

2.3 Form factors 

In the independent particle model the proton and neutron nuclear form factors, 

which are functions of the square of the momentum (k2), can be obtained from the 

radial density (1) by using the relation 

F(k2) = 4HoJ*p(r)j0(kr)r2dr (6) 

(j0(x) is the zero order Bessel function). It has been found [15] that for closed (sub)shell 

nuclei these form factors are given by a simple expression of the form 

F(k 
*• λ=0 

=kb (7) 

where the dependence on the momentum k is contained in the parameter a. The 
coefficients θχ are defined in ref. [15] and their exact values are given in table 3. We see 

that they are also rational numbers as the respective coefficients for p(r). Equation (7) 
can also be written in the form of eq. (2) as 
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1 ο N ÎQiax 

F(k2) = ̂ e-«2w<j>(Z)i Φ ( Ζ ) = £ θ λ α 2 λ (7a) 
*• λ=0 

where again the knowlegde of Φ(Ζ) is sufficient for the calculation of the form factors 
F(k2). 

Ζ 

2 

6 

8 

14 

16 

2 0 

28 

32 

38 

4 0 

50 

58 

64 

68 

70 

82 

92 

Highest 

occupied 

Hevel 

0 s 1 / 2 

0 p 3 / 2 

0 p 1 / 2 

0 d 5 / 2 

1s 1 /2 

0 d 3 / 2 

0 f 7 / 2 

1 p 3 / 2 

0ί5/2 

1p1/2 

0 g 9 / 2 

0 g 7 / 2 

1d 5 /2 

1d 3 /2 

2s 1 /2 

0 h 1 1 / 2 

0h 9 /2 

λ=0 

2 

6 

8 

14 

16 

2 0 

28 

32 

38 

4 0 

5 0 

5 8 

64 

6 8 

7 0 

82 

92 

λ=1 

-2/3 

-1 

-3 

-11/3 

-5 

-9 

-11 

-14 

-15 

-65/3 

-27 

-31 

-101/3 

-35 

-45 

-160/3 

λ=2 

1/10 

11/60 

1/4 

13/20 

61/60 

79/60 

3/2 

5/2 

33/10 

17/4 

293/60 

21/4 

29/4 

107/12 

λ=3 

-1/105 

-11/420 

-1/30 

-1/24 

-5/56 

-107/840 

-173/840 

-31/120 

-7/24 

-73/168 

-31/56 

λ=4 

1/1512 

1/840 

1/336 

1/240 

1/192 

37/4032 

151/12096 

λ=5 

-1/27720 

-1/15120 

Table 3. The exact coefficients θχ, which determine the proton and neutron form factors for all 

closed (sub)shell nuclei up to 2 0 8 P b by using eq. (7). 

At this point we should mention several corrections that have to be made to the 
simple formalism described in this section. They are the corrections inserted if we take 
into account: (i) the nucléon finite size, (ii) the center of mass motion and (iii) relativistic 
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effects. As it was shown in ref. [6,18] these corrections signifficantly improve the results 
obtained with eqs. (2) and (7). We shall not discuss this point any further here (see ref. 
[17]). However, we must stress that, if we take into account the finite size of the 
nucléon and the centre of mass motion by using the folding method, we can obtain 
similar expressions to those of eqs. (2) and (7a) for p(r) and F(k2), respectively, but in 
this case we need more coefficients fx and θλ in order to describe the polynomials Π(Ζ) 
and Φ(Ζ). Also the definitions of fx and θλ are more complicated [15,17]. 

3. STUDY WITH PARTIAL OCCUPATION PROBABILITIES 

in the previous section we assumed that the occupation probabilities of the states 

are unity ( an|j =1 ) for states below the Fermi level and zero above it (mean field 

approximation). It is well known that even the spherical nuclei 1 6 0 and 40Ca do not 

have good closed shells. In this section we will exploit the form of eqs. (2), (4) and (7a) 

in order to construct general expressions for calculating the nuclear (proton and 

neutron) distributions (charge density and momentum), form factors and rms charge 

radii in the case when the filling numbers of the states are not integers. 

In this way we include to some exten-t configuration mixing and various sorts of 

correlations by inserting a number of parameters describing the occupation numbers of 

the surface levels. 

This method generalizes the approach, which has been developed [6] in the 

framework of shell model with harmonic oscillator potential by introducing fractional 

occupation probabilities to the surface orbits for light nuclei up to ^Ca. The parameters 

are chosen, as usually, so that some observed nuclear properties are reproduced. This 

is done here by first taking occupation probabilities from one-nucleon transfer reactions 

(see ref. [4-7]) and then making any neccessary adjustments in order to obtain 

agreement with the experimental data for the charge form factor. 

In the general case, even when there are not closed (sub)shells, we can make the 

following approximation for the average total density ( see e.g. ref. [9] ) 

PC) = ^ T Σ (2j+1)an!j|Rnlj|2 (8) 
all (n, I) j 

where any are the proton (neutron) occupation probabilities for the orbit characterized 

by the quantum numbers n,l,j. The sum in eq. (8) runs over ail the quantum numbers 

(n,l)j of the single particle states. For the orbits below the Fermi level of the nucleus, the 

"core-orbits", anij = 1 i.e. they are equal to the simple shell model predictions, but for the 

active (surface) orbits an(j < 1. Also an(j * 0 for some orbits above the Fermi level. The 

following sum-rules hold: 
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Y (2j+1) = Τ (2j + 1) an l j=Z (8a) 
(n.Ojciosed. all(n,l)j 

The differences of an(j from 0 or 1 is an indication of how realistic is the used single 

paride potential model. The fractional filling numbers (2j+1)an|j, of each state are 

known from experimental data. 

From the data of tables 1 and 2 and from the eqs. (2), (4), (5c) and (7a) we shall 

derive now simple parametric expressions with one, two or three parameters, describing 

the deviation of filling numbers from those of the simple shell model ones. 

For simplicity we consider as a first example the case where only two filling numbers 

of the states are not integers i.e. 1) the highest occupied near the Fermi surface j-level, 

which according to the simple shell model is fully occupied and 2) the first above it, 

which according to the simple shell model is empty. In oder to find the one-parameter 

formula for every closed (sub)shell nucleus (A,Z), which contains as special cases the 

results of ref. [6] for light nuclei, we must use the polynomials Π(Ζ) giving the density of 

three adjacent closed (sub)shell nuclei i.e. the considered nucleus and two more with: 

a) Z1 < Ζ (which has as upper occupied level the one lying just below the Fermi level 

of the nucleus in question) and 

b) Ζ' > Ζ (which has as upper occupied level the one lying just above the Fermi 

level of the nucleus in question). 

For nuclei with 20 .< Ζ < 28, for example, we must use the polynomials Π(Ζ.,=16), 

n(Zc=20) and Π(Ζ'=28) for the density p(r) ( and momentum distribution n(k) ), the 

polynomials «£^=16), Φ(Ζ0=20) and Φ(Ζ'=28) for the form factor and the sums 

S(Z.,=16), S(ZC=20) and S(Z'=28) for the mean square radius of the (point) proton 

distribution. The result for the density can be written as 

Π(Ζ,αι) = Π ^ ) -Η [ Π(Ζ0) - Π<Ζ,) ] Z°zjz^ + I n ( z ") " n ( Z c) I ̂ ^ (9) 

where the two last terms in eq. (9) give the contribution of the active (surface) levels with 
occupation numbers Z c - Z r a i and Z-Zc+oci respectively. We give here as an example, 

the relevant expressions for 4 0Ca. For the density p(r) the polynomial Π(Ζ) is 

TT/-7 or, * c 60-4αι /r\4 8 a i /r\6 . . . . 
Π(Ζ=20,αι) = 5 - Η - j s ^ y + jçf (j-) (10.a) 

For the form factor the polynomial Φ(Ζ) is 

Φ ^ Ο , α Ο = 20 - ^ ^ (kb)2 + ^ 3 1 ( k b ) 4 . ^ L ( k b ) 6 ( 1 0 b ) 
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Eqs. (3)-(11) of ref. [6] can be derived from our general eqs. (2), (5c), (7a) and the 

parametric eq. (9) if we use the sequence of the j-levels used in ref. [6]. For example, for 

the derivation of eq. (3) of ref. [6] for the density of 1 6 0 , we must use the polynomials 

Π(Ζ·|=6), Π(Ζο=8) and Π(Ζ'=10), which correspond to the sequence of j-levels: 0s1/2, 

0p3/2, 0p1/2, 1s1/2, 0d5/2, of the work of Gul'karov et al. [6]. From eqs. (3) and (3a) 

above we find [17]: Π(Ζ'=10) = 5 + (4/3) χ4, which, by using eq. (9), gives the eq. (3) of 

ref. [6]. 

The important possibility offered by eqs. (2), (5), (7) and (9) is the construction of 

two, three et.c. parametric equations describing the properties discussed in section 2 for 

a closed (sub)shell nucleus by means of the fractional occupation probabilities of the j -

orbitals. We assume now that the surface nucléons of such a nucleus are spread in four 

partially occupied j-levels: two below the Fermi surface and two above it. Then the 

three-parametric expression which describes the proton density of the nucleus is given 

by eq. (2) with Π(Ζ) given by 

Π(Ζ,α1(α2,α3)= Π(Ζ2) ^ + Π(Ζ 1) [ ^ - ^ ] π- n ( 2 c ) [ ^ - ^ ^ ] + 

+nwM+^c-£?]+n{r)^z (11) 

( λ = αϊ + oc2 -0C3 ) where the parameters oq give the depletion of states below the Fermi 

surface ( (2j+1)-ccj = (2j+1)anij ) and the occupation numbers above it ( a, = (2j+1)anij ). 

Also Z2 < Zi < Zc < Z' < Z" for the adjacent Z-closed levels ( Z c < Ζ < Ζ ). The same 

expressions hold for the Φ(Ζ) giving the form factors and S(Z) giving the mean square 

radii. 

Expressions (2), (5), (7), (9) and (11) can be used approximately even for nearly 

closed (sub)shell nuclei. Also the nucléon momentum distribution n.(k) for spherically 

symmetric systems is given by means of expressions similar to (9) and (11). 

4. RESULTS AND DISCUSSION 

The method described above was applied to the core nucleus 40Ca. We assume 

that the surface protons for 40Ca are distributed on the 1s1/2, 0d3/2, 0f7/2, and 1p3/2, 

(sub)shells which are partially occupied. We use eq. (11) in order to obtain the 

polynomials Π(Ζ) containing the parameters αϊ, 012, ot3 which describe the fractional 

occupation probabilities of these four.levels and we determine the parameters by fitting 

to the charge form factor Ffk2). The result for the charge density distribution of 4 0 Ca as a 

function of r is shown and compared with the available experimental data on the 

nuclear charge density in fig. 1. The agreement is very good with the values of the 

occupation numbers for the active levels shown in table 4. The rms radius, which 
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essentially determines the h.o. parameter b (b= 1.998 fnr1), is equal to <r 2 > 1 / 2 = 3.4803 

fm i.e. equal to the experimental value [10]. 

Fig. 1. Plot of the proton density distribution in 4 0 Ca as calculated with the simple harmonic oscillator 

shell model (dashed-line) and with eq. (11) by assuming fractional occupation probabilities (solid line). 

The experimental data (circles) of ref. [10] are also shown. 

The occupation numbers found together with the experimental ones are listed in table 4. 

We can see that the values of the parameters 012 and 013 are in good agreement with 

the experimental values [4,5] , but the value of αϊ we found is larger than the 

corresponding experimental one. This also affects the occupation probability of the 

1p3/2 shell for which our results show that it is 15% occupied while in ref. [4,5] it was 

found to be 4.3% occupied. 

Orbital 

1p3/2 

0f7/2 

0d 3 / 2 

1s1/2 

(2j+1)anii Exp. 

0.15 

0.56 

3.59 

1.70 

(2j+1)anii Th. 

0.60 

0.75 

3.75 

1.35 

Table 4. Experimental and 

theoretical occupation num

bers for the active levels 

of ^ a . 

In ref. [6] only one parameter was used and it was determined from the value of p(r) 

in the centre of the nucleus although in this region the experimental uncertainty of p(r) 
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is large. As it is obvious from eqs. (10a) and (10b) none of ai can be determined in this 

way. 

In fig. 2 the calculated elastic charge form factor for 40Ca as a function of the 

momentum transfer k is shown. For comparison the results obtained by putting a, =0 i.e. 

the simple shell model results (dashed line) are also shown. The improvement because 

of the fractional occupation probabilities is obvious. Beyond k « 3.0 fnrr1 our results 

predict another diffraction minimum, not predicted by the simple shell model but existing 

in the experimental data though in a different position. The elastic electron scattering 

experimental data shown are from ref. [10]. 

f -
1 2 , 3 A 

kifrri1) 

Fig. 2. Plot of the elastic charge form factor for 4 0 Ca as calculated from the simple shell model 

(dashed-line) and assuming fractional occupation probabilities (solid line). The prediction of the third 

minimum by our method is evident. The experimental data shown (circles) are from ref. [10]. 

We note that in calculating the quantities p(r) and Ffk2), the finite proton size and 

centre of mass corrections have not been taken i n t o account. 

5. CONCLUSIONS 

In the present work we have calculated the coefficients ίχ (eq. (3) and (3a)) and θχ 

(eq.(7)), which give the proton and neutron nuclear densities, rms radii and form factors 

-5-

LL 
r -10 Î 

ο 

-15-

-20-
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for all closed (sub)shell nuclei in the harmonic oscillator shell model. With the aid of 

them we generalized the method of calculating nuclear densities and form factors of ref. 

[6]. This method takes into account approximately the different sorts of correlations and 

configuration mixing found in many nuclei, by assuming fractional occupation 

probabilities of the states. 

The calculation of the charge density distribution and charge form factor of the 
4 u Ca, gives good results for low and medium momentum transfers, but for k> 3.0 fnrr1 

various sorts of correlations must be explicitly introduced [9,12,16]. 
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