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Nuclear form factors and closure approximation in the study of 

the (//~,e~) conversion in nuclei* 

T. S. Kosmas and J. D. Vergados 

Division of Theoretical Physics University of Ioannina, GR 451 10 Ioannina, Greece 

ABSTRACT : The methods of studying the exotic ( μ - , e - ) conversion in nuclei 

are discussed. For the coherent process the dependence of the rate on the nuclear 

parameters is obtained by using shell model nuclear form factors. For the noncoher­

ent processes the relevant matrix elements are calculated in the framework of the 

closure approximation. Finally the fraction of the transition rate of the coherent 

process throughout the periodic table is calculated. 

1. Introduction 

The anomalous process of converting the bound muon of a muonic atom into 

an e l e c t r o n *. 

μ-+(Α,Ζ)->ε- + (Α,Ζ) (1), 

has recently aroused a special experimental [1,2] and theoretical [3-8] interest 

among all the muon number violating processes. On the theoretical side muon 

number violation is predicted to occur due to neutrino mixing, s-lepton mixing 

ei.c. in the framework of almost all the extensions of the standard weak interaction 

model. Since it has been suggested [4] that the muon conversion (1) is the best place 

to look for the muon number violation if it occurs, experimental efforts were made 

i n s e a r c h i n g f o r the limits of the branching ratio ReN of the μ — e conversion 

rate to the total rate of the ordinary muon capture reaction [9]. Up to now the best 

limit has been set for the 48Ti nucleus [2] in the value Re^ < 4.6 χ 1 0 - 1 2 and it is 

expected to be improved further by new experimens. 

Of special interest is the coherent process of the (μ~, e - ) , i.e. when the nucleus 

(A,Z) remains in its ground state. In this process only ground state to ground state 

transitions (gs —• gs) are present and they have been discussed in detail previously 

[5,6]. Transitions to all excited states were only recently studied [7] by calculating 

the total rate, sum of the partial rates for all the excited states | / > of the nucleus 

in the process considered, by using closure approximation. In the recent survey [8] 
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of the muon number violation in the (μ~,β~) the (A,Z) dependence of the total 

μ — e rate for all the periodic table has been extensively studied. 

In this talk, after stating briefly the main conclusions of the related theoretical 

works we shall focus our attention on the calculation of the gs —> gs transitions 

which exaust the main part of the total (//~,e~) rate [5,6]. 

2. Theoretical formulation 

Starting from an effective interaction hamiltonian constructed in the context 

of a gauge model predicting the process ( μ - , e - ) [3], we can write at nuclear level 

the single-particle operator responsible for this process as [8] 

where Ωο is the vector and Ω the axial vector component of the (μ~,ε~) operator 

and aj (r,) the spin (isospin) operator of the nucléon with space coordinate Tj. 

The parameter β is equal to the ratio of the isovector to the isoscalar component at 

the quark level and depends on the specific mechanism assumed for lepton flavour 

violation [3]. For simplicity in this talk we shall discuss the case of photonic mech­

anism (β = 3). Other mechanisms are discussed in ref. [8]. The magnitude of the 

momentum k/ of the outgoing electron is given approximately by 

| k , | « τημ - (Ef - Ega) (3) 

whith Ef, EgS being the energies of the final and ground state of the nucleus, 

respectively. 

The calculation of the total ( μ - , ε - ) rate needs the evaluation of the vector 

and axial vector matrix elements of the operator (2) for all the intermediate states 

I / > i.e. 

5«=Σφ/^Ι</Ι«Ι'>! 2. ° = V,A (4) 

In order to find the Sv and SA, one can follow two general methods: 

1) Closure approximation: With this method the contribution of each final 

state | / > into the total rate is taken into account without constructing this 

final state explicitly. By assuming a mean excitation energy of the nucleus AE = 

Ef — EgS « 20MeV (or a mean momentum transfer k « . 4 3 5 / m - 1 ) , as is the 

2.8 



case in the ordinary rnuon capture process, the matrix elements (4) can be well 

approximated by the expectation value in the ground state of two-body operators. 

The result is written as 

e 
m 

ML = ~\\<i\Ov\i>\2 + 3|< i\0A\i >|21 (5) 

where the two-boby operators Oy (vector) and Ο A (axial vector) result from the 

corresponding parts of the ( μ - , ε ~ ) operator. Their exact expressions are given in 

eq. (23) of ref. [8]. 

2) Summing over partial rates: With this method we construct explicitly the 

final nuclear states | / > in the context of a nuclear model e.g. shell model, random 

phase approximation et.c. Thus,by performing detailed calculations the validity 

of the closure approximation in the process (//~,e~) can be checked. The method 

proceeds by expanding the exponential of the operators (2) in terms of spherical 

Bessel functions. Then the matrix elements (4) are written as 

7,2 

5« = /«Σ(^)Σΐ</ΙΙ T^)J\\i>\\ a = V,A (6) 
k2 

f mM- ι 

where the two types of the operators T^l,tr'J, are given by 

T&0)J = 6u £ (l + g/?)j,(A:r)ir(r) (6a), 
all nucléons 

for the vector part (σ = 0) and by 

T(M'")J = Σ (! + 9ß)Ji(kr) [ΥΓ(τ)χσ] ^ (66), 

for the axial vector part (σ = 1). The index q in eqs. (6a) and (6b) reffers to 

protons, q = 1, or neutrons, q = — 1 and results because of the selection rules of the 

operator (2) (charge conserving). 

In ref. [10] the quasi-particle random phase approximation (QRPA) is currently 

used to calculate the intermediate nuclear states. The reduced matrix elements of 

eq. (6) in terms of the QRPA method for a transition from the g.s. (0 + ) to the 

state | / > is written as: 

< / H T W H o+ >= Σ < a II TJ II ß >q \
xaßq)J^ß + y.(i,f) V a l (7) 

a<ß,q " 
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The quantities X and Y are the forward and backward-going amplitudes and υ, u 

represent the probability amplitutes for the single particle states to be occupied and 

unoccupied respectively. The indices a and β run over all configurations coupled 

to a given angular momentum J of the state | / >. Thus#the task of QRPA is to 

provide the values of Χ, Y amplitudes as well as the probability amplitudes u and 

v. 

The computation of the reduced matrix elements in eq. (5) and (7) is straight­

forward. In the context of the shell model the matrix elements of eq. (5) for closed 

(sub)shell nuclei can be written in a simplified form as [7,8] 

Nnax 

S = g(A,Z)(l-J2txa
2xy-a*/\ a = V2kb (8) 

λ=1 

where b is the harmonic oscillator parameter, Nmax is the maximum number of 

quanta occupied by the nucléons in the considered nucleus and ξχ are appropriate 

coefficients. The functions g(A, Z) describe the total rate for small momentum 

transfer (k κ 0). 

The partial rate for gs —• gs 0 + transitions has contribution only from the 

vector operator. In this case the corresponding matrix element takes the form 

K-.. = fy^ \ZF^2) + NTTeFN{k2)}' ( 9 a ) 

μ r 

where Fz(k2) ( F ^ ( Â ; 2 ) ) are the proton (neutron) nuclear form factors. For the 

coherent rate (k « 0 .53 /m - 1 ) the shell model form factors Fz{k2) for all closed 

(sub)shell nuclei take the simple form (point-like particles are assumed) 

1 Nmax 

Fz{k2) = -V°2 /4 £ θχα2\ a = kb (9) 
λ=1 

where the coefficients θ\ are rational numbers. 

3. Results and discussion 

In the study of the ( μ - , e - ) two quantities are most important: 

1. The branching ratio ReN of the μ — e rate to the total muon-capture rate 

which can be written as [8] 

Γ(μ~ -» e~) 
ReN = ^fz r ( = P 7 (10) 

Γ(μ -*!/„) 
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where the quantity ρ contains the lepton flavour violating parameters [3] and the 

function 7 describes the nuclear dependence of ReN. The function 7 is given by 

G2Zf(A,Z) 

Nucleus(A,Z) 

(12,6) 

(16,8) 

(28,14) 

(32,16) 

(40,20) 

(48,20) 

(60,28) 

(72,32) 

(88,38) 

(90,40) 

(114,50) 

(156,64) 

(168,68) 

(176,70) 

(208,82) 

Fz 

.763 

.736 

.639 

.618 

.582 

.563 

.489 

.456 

.412 

.406 

.335 

.263 

.249 

.242 

.189 
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3.64 

4.52 

5.95 

6.37 

7.05 

16.08 

9.24 

11.54 

12.98 

11.41 

10.35 

11.96 

12.47 

13.75 

10.42 

M2 

21.0 

34.7 

80.0 

97.8 

135.5 

126.8 

187.5 

212.9 

245.1 

263.7 

280.6 

283.3 

286.7 

287.0 

240.2 

ML 

26.8 

38.8 

100.6 

123.8 

169.8 

188.8 

289.0 

356.6 

446.8 

471.1 

607.9 

783.0 

833.7 

861.7 

941.5 

η% 

78.4 

89.4 

79.5 

79.0 

79.8 

67.2 

64.9 

59.7 

54.9 

56.0 

46.2 

36.2 

34.4 

33.3 

25.5 

Table 1. Matrix elements for the photonic mechanism of the (μ , e ) conversion 

in closed (sub)shell nuclei. 

In eq. (11) f(A,Z) represents the Primakoff's function [9], which describes 

the total muon capture rate, G2 « 6.0 and M2 are the nuclear matrix elements 

calculated as we stated previously. 
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In table 1 the proton nuclear form factors calculated at k ss .534/ ra - 1 by 

using eq. (9b) and taking into account the nucléon finite size are shown. Though 

this value of the momentum transfer k is relatively large for nuclear standards the 

agreement with the experimental elastic electron scattering data has been found [6] 

to be very good for all closed (sub)shell nuclei up to 208Pb. In the above table the 

resulting values of function 7 are also included. We see that the gross dependence 

of the μ — e rate on (A,Z) is relatively smooth. The variations reflect mainly the 

dependence of the Primakoff's function on the n e u t r o n e x c e s s ( N-Z) [8'V. 

2. The second usefull quantity of the (μ~,β~) reaction is the ratio of the 

coherent rate divided by the total μ — e rate i.e 

V = M2

gs_gs/M2 (12) 

Values of the ratio η and the needed matrix elements for stable nuclei through­

out the periodic table are listed in table I. We see that for light nuclei the coherent 

channel dominates but η decreases for heavy nuclei. 

4. Conclus ions 

The shell model nuclear form factors and total μ—e matrix elements obtained by 

assuming closure approximation, show that the behaviour of the rate as a function 

of the nuclear parameters is smooth and that the coherent μ — e rate for light nuclei 

dominates. For heavy nuclei other channels become signifficant and the coherent 

contribution is only about 30%. 
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