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Study of the exotic μ — e conversion in nuclei 
using RQRPA 

Zhongzhou Rena,:L, Amand Faessleraand T.S. Kosmasb 

aInstitute für Theoretische Physik der Universität Tübingen, D-72076 Tübingen, 
Germany 

Theoretical Physics Division, University of Ioannina, GR-45110 Ioannina, Greece 

Abstract 

The neutrinoless muon-to-electron conversion in nuclei is studied by using the renor-
malized quasiparticle random-phase approximation (RQRPA). This generalization 
of RPA is more reliable for the extremely small ( μ - , e - ) transition matrix elements 
than the ordinary QRPA because it restores the Pauli principle to a large extent. We 
apply the method to a set of nuclei throughout the periodic table, but we specifically 
investigate the 4STi and 2 0 8 P 6 nuclei which are currently used as stopping targets 
at the PSI μ — e conversion experiments with the SINDRUM II spectrometer. 

Key words: Lepton flavor violation, rare muon decays, μ — e conversion, muon 
capture, RPA, renormalized quasiparticle RPA, ground state correlations, 
transition matrix elements. 
PACS: 23.40.Bw, 13.35.Bv, 21.60.Jz, 12.60.Cn 

1 Introduction 

The investigation of the neutrinoless μ~ —>• e~ conversion in muonic atoms, 

μϊ + (Α,Ζ)^β- + (Α,Ζ)* (1) 

is especially interesting research both from an experimental [l]-[3] and theo­

retical [4]-[7] physics point of view. The importance of this process is due to 

the fact that its observation would signal a breakdown of the separate lepton 

number conservation for electrons and muons. Up to now no μ-e conversion 
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events have been seen but instead upper limits for the observation of this pro­
cess have been well established by several experiments [l]-[3]. The best limit 
of the μ~ -* e~ branching ratio to the ordinary μ~ capture, Rße, has been set 
by the SINDRUM II collaboration using 48Tz [1,2] as 

RH < 6.1 χ IO" 1 3 (2) 

This limit provides very severe constraints for muon number non-conservation 
compared to other similar processes [8]-[ll]. This is mostly due to the possi­
bility of the coherent effect, a distinct feature of process (1) which constitutes 
the signature of the μ — e conversion in the relevant experiments. The coher­
ent channel is expected to appear as a single peak at momentum q « τημ — e& 
in the measured electron-spectrum (τημ is the muon mass and €*, its binding 
energy in the muonic atom). 

The advantages of the μ — e conversion motivated some of the most sensi­
tive experiments [l]-[3] performed the last decades to look for flavor violation 
events (see Ref. [5]). The SINDRUM II experiment, which is at present the 
only operating μ — e conversion experiment, is using 4 8Ti as target and is 
aiming to increase the sensitivity on the branching ratio Rße by about two 
orders of magnitude. Recently, a new μ — e conversion experiment, the so 
called MECO experiment at Brookhaven, has been designed on 27A1 target [3] 
with the aim to push the best limit below 10 - 1 6 and search for new physics. 
For these experiments the knowledge of reliable nuclear physics inputs for 
all possible μ~ —• e~ conversion channels of the targets used is an essential 
prerequisite. 

In previous works [7,8] the renormalized quasiparticle random phase approx­
imation (RQRPA) appropriate for the μ — e conversion has been formulated. 
The influence of the renormalized quasi-boson approximation, on which the 
RQRPA relies, to the coherent matrix elements was also studied [7]. As has 
been shown, the improved quasi-boson approximation takes reliably into ac­
count the nucleon-nucleon ground state correlations which are important in 
evaluating accurately the sensitive (μ~,ε~) rates. The purpose of this work 
is to investigate the incoherent channels and calculate all possible transition 
matrix elements of the reaction (1) within the context of the RQRPA. The 
correlated ground state, on which the excited states reached by the incoher­
ent channels are built, is derived in the same manner as in Ref. [7] and plays 
important role in our calculations, because it includes more exactly the Pauli-
exclusion principle than the previously used normal QRPA. 

The relevant μ — e conversion operators refer to the photonic and some non-
photonic mechanisms (see Ref. [12]-[16]) and calculations are performed for 
a set of nuclei throughout the periodic table. We emphasize on the nuclei 
4 8 Ti and 208Pò which have recently been used as targets in the SINDRUM II 
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experiment at PSI. We should note that, similar calculations for the odd-A 27A1 
target employed by the Brookhaven experiment cannot be carried out with 
RQRPA (detailed shell model calculations for this target have been performed 
in Ref. [9]). 

Our present results combined with the lowest experimental limits on Rße could 
determine bounds on the flavor violating parameters entering the branching ra­
tio Rße in some extensions of the standard model (with finite neutrino masses) 
as well as in supersymmetric theories [7]. With these limits we can constrain 
the neutrino masses, mixing angles, etc. of a neutrino mixing scenario or the 
parameters of a SUSY model entering a μ—e conversion Lagrangian describing 
this process. 

2 The renormalized QRPA for the μ -»> e reaction 

The refinement of the QRPA adopted in the present work is the so called 
charge-conserving Renormalized QRPA, since in the reaction (1) the charge 
of the target nucleus is not changed. This implies that, for the μ~ —» e~ re­
action, the RQRPA with two-proton or two-neutron quasi-particle excitations 
is needed. This type of QRPA, goes beyond the quasi-boson approximation 
(QBA) in which the Fermion pairs are treated as bosons. The so called renor­
malized QBA [7], takes into account the exact commutation relations of a 
Fermion pair in the RPA ground state expectation value and includes in a 
good approximation the Pauli principle, which prevents to have too many 
quasi-particles in the ground state. 

The ordinary QRPA, as is well known, relies on the assumption that the an­
gular momentum coupled bifermion operators A\ A obey boson commutation 
relations in a correlated RPA ground state [10]. This assumption is a reliable 
approximation if the correlated ground state does not appreciably differ from 
the uncorrected one. As has been recently shown [7], the normal QRPA over­
estimates the ground state correlations, a shortcoming which can be cured by 
rewriting the commutation relations for A\ A as 

(0+RPA\[AT(kL JM), Al(k'l', JM)]\0+PA) ~ 6w6w&rr'Vrr'(klt J), (3) 

where V is a renormalizing matrix defined as 

VTT,(kl,J) = 

1 - h1 < 0ìpA\[alkaTÌ]l\0ìpA > -JT1 < 0h>AH>ia>r>no\0tpA > (4) 
(j = y/Tj + 1). Thus, the commutation relations (3) take into account the 
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fact that the nucléon pair consists of two Fermions. In the above equations, 
k and I denote the set of quantum numbers (nk,lk,jk) and {ni,k,ji) for the 
single particle levels that can be coupled to a total angular momentum J and 
parity π (J*). The indices r, τ' denote the charge of the nucléons (protons 
or neutrons). 

The RQRPA method proceeds by rewriting the two-quasiparticle operators in 
terms of A1", A as 

4 ( W , JM) = V;T
1/2{kl, J ) 4 ( W , JM), 

AT{kl, JM) = V;i/2{kl, J)AT{kl, JM) (5) 

Thus, A and A commute like bosons and restore the Pauli principle to a 
large extent. It should be noted that, the definition of the matrix V in Eq. (4) 
takes into account only the diagonal part of the exact fermion commutation 
relations, and consequently we can still write down an eigenvalue problem by 
defining new variational amplitudes X and Y in terms of the old ones X and 
Y as 

X = Vl/2X, Y = V1/2Y, (6) 

and new RPA matrices Λ, Β in terms of the ordinary-QRPA matrices A, Β as 

A = Vll2AV-l'\ Β = Vll2BV-1'2. (7) 

It is worth noting that, the replacement of the free variational amplitudes X, 
Y and the bifermion operators A\ A by their renormalized ones, Eqs. (5) 
and (6) respectively, does not change the form of the phonon-operator Q™M 
[7,8]. This means that in the renormalized quasiparticle RPA the m t h excited 
state having total angular momentum J projection M and parity π, | J£M), is 
created by acting with the phonon-operator Q^ÌM on the correlated RQRPA 
vacuum \0)RQRPA as 

K M ) = QtM$)RQRPA. (8) 

The ground state Ô) can be deduced as usually from the Thouless 
0 I IRQRPA J 

theorem and the uncorrelated ground state |0) as [10] 

I0)> RQRPA = Ή° β Χ Ρ \\ Σ \ö{ab'
T)Äl(a, λ ^ ft Tfì \ |0> . (9) 

Χμ 
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where α = (kl), b = (hfl') run over the configurations coupled to momentum 
λ. The matrix C is a new correlation matrix derived as in the case of the 
ordinary QRPA [8] but now the new variational amplitudes X and Y should 
be used as 

c^ = {7l[x^}ab. (10) 

The above way of constructing the correlated RQRPA ground state preserves 
only linear terms of the new correlation matrix C in the series expansion of Eq. 
(9) and consequently we have for evaluation only bifermion operators acting 
on the uncorrelated ground state. Under these conditions, the normalization 
factor entering Eq. (9) is written as 

N0= [l + | C | 2 ] " 1 / 2 (11) 

This factor measures the effect of the nucleon-nucleon ground state correla­
tions [7]. 

3 The μ-e conversion transition matrix elements 

Theoretically, the μ — e conversion can proceed in many models (common 
extensions of the standard model as well as supersymmetric theories) via pho­
tonic and non-photonic mechanisms [4,5,11,16]. In the photonic mechanism 
the photon 7 is virtual coupling the leptons to the nucleus. There are many 
types of non-photonic mechanisms which occur through the exchange of vari­
ous particles [5,16]. 

The expression for the branching ratio Rße of the μ~ —> e~ conversion contains 
the square of the nuclear matrix elements of tensor operators resulting from the 
hadronic currents describing the above mechanisms [16] in the non-relativistic 
approximation (nuclear level) [5,6]. 

3.1 The matrix elements for the multinole expansion operators 

In the coordinate space, the nuclear operators of the μ~ —• e~ conversion 

are obtained via the multipole expansion procedure [10]. This gives tensor 

operators of the form TjJ (J is the operator angular momentum rank and 
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M its projection) which are given by 

TÏi0)J « gvSu ν ^ Σ ( 3 + fir*)Ji(Vi)YÌt(*t), (12) 

for the polar-vector component of the hadronic current (Fermi type or spin 
independent operators), and 

T&1)J=ÌAJY ttsr+toward [y(ft)Hir · (13) 

for the axial-vector component of the hadronic current (Gamow-Teller type or 
spin dependent operators). ji{qr) are the spherical Bessel functions resulting 
from the plane-wave, e i q r , representation of the outgoing electron. The mag­
nitude of the momentum transfer q is given by q = πιμ — e^ — Ex where Ex 

the excitation energy of the daughter nucleus. 

For our calculations the operators T^ of Eqs. (12) and (13) must be first 
rewritten in the quasi-particle basis, i.e. in terms of the operators A\ A [10]. 
To this aim we start from their second quantization form 

32,ji,r J 

where é (c) is a particle (hole) operator, and then we use the well known 
Bogolubov-Valatin transformations 

c)m = Uj a)m - Vj a^, cj^ = Ujaj^ + Vj a]m. (15) 

In these transformations, Vj and Uj represent the probability amplitudes 
for the single particle states to be occupied and unoccupied, respectively, and 
Cj^ = (-) j ,_mcJ_m. The operators T^ take the form 

J2J1,T 

+PTÌJ2JU J)AJ(J2JU JM) + pr(J2Jl, J)A{j2Jl,7M) ] 

-ÔMOÔJO Σ I WrJ(w) (Κ ( Τ ) ) 2 ( l ß) 
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In Eq. (16), in addition to the two quasi-particle operators A+(J2J2, JM) and 
A(J2J2, JM), there also appear the scattering operators B+ and Β defined as 

B\J23u JM) = [a]2a3i]
J

M, B(j2ju JM) = [B^j2ju JM)]* (17) 

The quantities s, p, s and ρ in Eq. (16) are given in Ref. [8] and the quantities 

Wj(J2Ji) are 

WT

J(J2Ji) = Q(2J + I ) " 1 <j2 | | t ^ J | | h) (18) 

with 
Q '— (3 + βτ), for Fermi operators 

Q = (ξβ" + β'Τ), for Gammow-Teller operators. 

The single-particle reduced matrix elements {J2||TJ | |ji) in Eq. (18), for har­
monic oscillator (h.o.) wave functions, have been written in a compact way 
as 

Kmax 

O2 || t{l's)J || h) = e-* Σ θξ χ«+ι'\ χ = (qb)2/4 (19) 

with b the h.o. size-parameter and 0f {J1J2', J) given in Ref. [8]. Equation (19) 
permits the computation of the coefficients 0f, which are independent of the 
momentum transfer q, once and for all the necessary configurations. Then, the 
reduced matrix elements (J2 \\ TJ \\ j\) needed for a given nucleus are readily 
evaluated for every value of the momentum transfer q. 

3.2 Inclusive μ — e conversion matrix elements. 

The inclusive (μ~, e~) conversion rate is evaluated by summing over the par­
tial contributions for all possible final states | /) induced by the Fermi and 
Gammow-Teller type operators of Eqs. (12) and (13). The coherent contribu­
tion in RQRPA has been calculated and discussed in Ref. [7]. The correspond­
ing incoherent matrix elements are written as [8] 

^ = Σ(^-) 2 ΣΚ/ΙΙ^Ί|0> β ( 3 Α ΡΛ| 2 , f=(JlM), a = V,A (20) 
/ m n l,J 

(Sv is the Fermi-type and SA the Gammow-Teller-type contributions). The 
reduced matrix elements (f\\fJ\\Ö)RQRPA for a given multipole RQRPA state 
\f) = \J%) take the form 
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(JiïïFïïdiBQRPA = 

Σ WiihJiìix'ihJuJÌU^V^ + i-rY'AhjuJÌV^^} (21) 
J2>jl,T 

where 

WJ
T(J2Ji) = vtfUtfufjWi&h) 

Eq. (21) shows that the incoherent matrix elements in RQRPA have the same 
structure as those of the ordinary QRPA [see Eq. (15) of Ref. [10]], i.e. the 
first can be obtained by substituting in the normal QRPA the free variational 
amplitudes X and Y and the matrix elements W? with their renormalized 
counterparts Χ, Y and WT. 

The necessary matrix elements for the total (μ~, e~) rate in RQRPA are then 
easily computed by adding the vector and axial vector contributions of the 
coherent and incoherent rates (see below). 

4 Results and Discussion 

Using the formalism of the renormalized QRPA developed before (see also 
Ref. [7,8]) we carried out a detailed study of the inclusive (μ~,ε~) conversion 
rates. For comparison with previous works we employed the same set of nuclear 
isotopes and use the same inputs as in Ref. [7]. In order to illustrate the 
difference between RQRPA and QRPA results and estimate the influence of the 
ground state nucleon-nucleon correlations on the incoherent μ — e conversion 
matrix elements, we have also listed previous QRPA results [12]. 

As has been stressed before, the effect of ground state correlations is of par­
ticular significance for the very small μ~ —• e~ transition matrix elements and 
they must be accurately incorporated in structure calculations. In principle all 
RPA methods take into consideration to some extent the ground state correla­
tions. However, as has been pointed out [7], the RQRPA describes them in an 
explicit and more reliable way. For the μ — e conversion this is important not 
only because the final states are built on the correlated ground state [see Eq. 
(8)], but also because the gs —> gs transitions dominate the μ~ —» e~ process 
[5]-[7]. The coherent RQRPA results and the extracted conclusions have been 
comprehensively discussed in Ref. [7]. 

The results for the incoherent (μ", e~) matrix elements obtained as described 
before for photonic and non-photonic mechanisms are quoted in Table 1. For 
the photonic mechanism there is no axial vector contribution and the incoher­
ent matrix elements are equal to Sy- For the non-photonic case, Sy and SS A 
refer to the vector and axial vector contributions of the W-boson exchange di­
agrams of Ref. [8], but the conclusions discussed below hold qualitatively also 
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Table 1 
Incoherent ( μ - , e - ) conversion matrix elements in RQRPA for the photonic and 
the non-photonic diagrams of Fig. 1(c). Sy stands for the contribution of the vector 
component and SA for the contribution of the axial vector component. For com­
parison we have also listed the QRPA results of Ref. [7]. All matrix elements are 
purified from the spurious unphysical contributions [12]. 

Photonic Mechanism Non-photonic Mechanism 

RQRPA QRPA RQRPA QRPA 

Nucleus SV Sy Sy SA Sy SA 

7.69 3.20 

4.79 5.36 
9.26 5.05 

11.37 6.67 
20.12 8.28 
14.00 6.77 

for other non-photonic diagrams [7]. As it is seen from Table 1, the incoherent 

μ — e conversion matrix elements calculated with RQRPA are smaller than 

the corresponding normal QRPA ones, but the differences are not very large. 

Despite the fact that for the coherent mode the RQRPA matrix elements are 

larger than those of QRPA [7], for the incoherent rate our calculations show 

the opposite trend. This can be justified by remembering that the ordinary 

QRPA ground state contains much more quasi-particles than the renormalized 

QRPA. Thus, in the normal QRPA the probability to excite quasi-particles is 

larger than that in RQRPA where the restored Pauli principle prevents them. 

This event can also be explained by the formalism described in Sects. 2 and 3, 

as follows. The magnitude of the coherent matrix elements is mainly governed 

by the square of the correlation matrix \C\2 for QRPA and \C\2 for RQRPA 

[see Eq. (11)]. For the currently interesting nuclei 4 8Tz and 20SPb this is il­

lustrated in Fig. (2) of Ref. [7] from which it is clearly concluded that the 

QRPA overestimates the ground state correlation due to the omission of the 

Pauli principle. Using the RQRPA, this principle is appreciably restored and 

the ground state correlations have been more correctly calculated. In contrast, 

the magnitude of the incoherent matrix elements [see Eq. (21)] is determined 

not only from the normalization coefficient iV0, which contains the correlation 

matrix, but also from the renormalizing matrix V. Thus, the increase induced 

by the NQ in the incoherent rate is compensated by the reduction of the V 

matrix. 

In Fig. 1 we plot the individual contributions originating from various mul-

tipole components of the incoherent rate, in the non-photonic case, obtained 

with RQRPA for the two nuclear isotopes 4 8 T i and 2 0 8 F 6 . One can see that, 

the main contributions to the incoherent mode, come from the low-spin mul-

tipole states 1~ and 0 + , 1 + , 2 + , a result which is in agreement with previous 

4 8 T i 4.60 
60Ni 3.84 
72Ge 5.54 

112 Cd 6.48 
162Yb 9.63 
2 0 8 P 6 7.26 

5.51 
4.48 
6.94 
8.14 

13.52 
8.97 

6.22 
4.42 
7.24 
8.64 

13.17 
11.52 

2.44 
4.05 
3.82 
5.17 
6.25 
5.60 
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Fig. 1. The individual contributions of each multipolarity to the incoherent matrix 
elements for 4 8Ti and 208Pb in the nonphotonic case. We see that the low multipo­
larity components dominate the total transition probability. 

QRPA calculations [7]. This means that the influence of the ground state cor­
relations on the incoherent transition matrix elements does not show clear 
channel dependence. The picture of the dominance in the incoherent RQRPA 
strengths is the same as that of the normal QRPA. Thus, for example, the 
1~ multipolarity is the most important in both methods. We mention that, 
the spurious center-of-mass admixures of the 1" multipole states has been 
eliminated in both QRPA and RQRPA by utilizing the method of Ref. [12]. 

Using the matrix elements of the coherent mode (Μ£,Λ) calculated in Ref. 
[7] and those of Table 1 (photonic mechanism) for the incoherent channels 
{M?ncoh), we computed the total rate matrix elements (Mfotal) and the ratio η 
(η = Mç0h/Mtot) of the coherent to total μ" —• e~ matrix elements (see Table 
2). It is seen that, the total matrix elements in RQRPA are slightly larger than 
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Table 2 
Inclusive μ —e matrix elements for the photonic diagrams and ratio η of the coherent 
to total (μ -, e~) matrix elements within RQRPA. The notation is: coherent (M2

oh) 
matrix elements, incoherent {M2

0tal = SV+3SA) matrix, and total {M?otal = M^h + 
Mfncoh) matrix elements. For comparison the corresponding results obtained with 
ordinary QRPA are quoted. 

RQRPA QRPA 

Nucleus Mfncoh Mjh M2

totol η Mfncnh Mjh Mjtal η 

4 8Ti 4.60 127.2 131.8 97% 5.51 117.7 123.21 96% 
mNi 
72Ge „ 

n2Cd 
162y6 

208p 6 

3.84 
5.54 
6.48 
9.63 
7.26 

171.1 
199.1 
285.7 
393.3 
415.6 

174.94 
204.64 
292.18 
402.93 
422.86 

97% 
97% 
98% 
98% 
98% 

4.48 
6.94 
8.14 

13.52 
8.97 

149.4 
169.9 
222.6 
283.8 
379.4 

153.88 
176.84 
230.74 
297.32 
388.37 

97% 
96% 
96% 
95% 
98% 

those of ordinary QRPA although the incoherent RQRPA matrix elements are 
smaller than the corresponding QRPA ones. This is due to the dominance of 
the coherent channel for which the trend of the matrix elements in the two 
methods is reversed [7]. 

The ratio η of coherent to total μ~ —> e~ matrix elements, which is an in­
teresting quantity for experiments [l]-[3], appears to be close to unity and 
this shows that the coherent transition exhausts about the entire total rate 
in the (μ~,β~) process. This result agrees very well with previous results [5]. 
We also note that, even though the absolute values of the μ~ —>· e - matrix 
elements calculated by RQRPA differ from those of ordinary QRPA both for 
the coherent and incoherent processes, the ratio η is not appreciably affected. 

As has been emphasized in our previous work [7], by using the more reliable 
matrix elements obtained by the renormalized QRPA and adopting the lim­
its on Rße extracted from the new run of SINDRUM II experiment for i8Ti 
target, we can determine severe constraints for the fundamental lepton flavor 
violating parameters entering the branching ratio Rße as follows: Assuming 
that Rße can be written [see Eq. (18) of Ref. [7]] as a product Rße = ρ j , 
where 7 contains the nuclear dependence of the branching ratio calculated 
with the aid of RQRPA matrix elements [7] and ρ contains the elementary 
sector dependence, we can put bounds on the parameter p. Even though, in 
principle, ρ is the only parameter one can constrain using the experimental 
sensitivity of Rße, in elementary models where the dominance of specific terms 
in the μ — e Lagrangian is a reasonable assumption, one can extract limits [16] 
for some special parameters (or products of parameters) describing this exotic 
process e.g. isoscalar parameter, isovector parameter etc. [9]. 
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5 Summary and Conclusions 

We have formulated the renormalized quasiparticle random phase approxima­
tion (RQRPA) for the nuclear-charge conserving semi-leptonic reactions with 
the goal to investigate the matrix elements for the inclusive μ — e conversion 
process. This method goes beyond the usual quasi-boson approximation on 
which the ordinary QRPA relies and leads to the restoration of the Pauli prin­
ciple. The nucleon-nucleon ground state correlations are suitably treated and 
therefore reliable results for the coherent and incoherent matrix elements of 
μ — e conversion are obtained. 

We found that the ground state correlations affect the incoherent matrix el­
ements in the opposite direction to that found previously for the coherent 
ones. As a result, the incoherent matrix elements calculated with the renor­
malized QRPA are smaller than those given by the ordinary QRPA. Reliable 
results for the very small μ~ — e~ transition matrix elements are of significant 
importance, since they can provide useful nuclear physics inputs for the PSI 
(SINDRUM II) and Brookhaven (MECO) μ —e conversion experiments which 
are some of the most sensitive current experiments seeking for events of muon 
number violation and new physics beyond the standard model. 
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