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A γ-rigid version (with γ = 0) of the X(5) critical point symmetry is constructed. The
model, to be called X(3) since it is proved to contain three degrees of freedom, utilizes an
infinite well potential, is based on exact separation of variables, and leads to parameter
free (up to overall scale factors) predictions for spectra and B(E2) transition rates, which
are in good agreement with existing experimental data for 172Os and 186Pt. An unexpected
similarity of the β1-bands of the X(5) nuclei 150Nd, 152Sm, 154Gd, and 156Dy to the X(3)
predictions is observed.

1. INTRODUCTION

Critical point symmetries [1,2], describing nuclei at points of shape phase transitions
between different limiting symmetries, have recently attracted considerable attention,
since they lead to parameter independent (up to overall scale factors) predictions which are
found to be in good agreement with experiment [3–6]. The X(5) critical point symmetry
[2], in particular, is supposed to correspond to the transition from vibrational [U(5)] to
prolate axially symmetric [SU(3)] nuclei, materialized in the N = 90 isotones 150Nd [7],
152Sm [5], 154Gd [8,9], and 156Dy [9,10].

On the other hand, it is known that in the framework of the nuclear collective model
[11], which involves the collective variables β and γ, interesting special cases occur by
“freezing” the γ variable [12] to a constant value.

In the present work we constuct a version of the X(5) model in which the γ variable is
“frozen” to γ = 0, instead of varying around the γ = 0 value within a harmonic oscillator
potential, as in the X(5) case. It turns out that only three variables are involved in the
present model, which is therefore called X(3). Exact separation of the β variable from the
angles is possible. Experimental realizations of X(3) appear to occur in 172Os and 186Pt,
while an unexpected agreement of the β1-bands of the X(5) nuclei 150Nd, 152Sm, 154Gd,
and 156Dy to the X(3) predictions is observed.
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2. THE X(3) MODEL

In the collective model of Bohr [11] the classical expression of the kinetic energy corre-
sponding to β and γ vibrations of the nuclear surface plus rotation of the nucleus has the
form [11,13]

T =
1

2

3∑
k=1

Jk ω′2
k +

B

2
(β̇2 + β2γ̇2), (1)

where β and γ are the usual collective variables, B is the mass parameter,

Jk = 4Bβ2 sin2(γ − 2
3
πk) (2)

are the three principal irrotational moments of inertia, and ω′

k (k = 1, 2, 3) are the
components of the angular velocity on the body-fixed k-axes, which can be expressed in
terms of the time derivatives of the Euler angles φ̇, θ̇, ψ̇ [13,14]

ω′

1 = − sin θ cos ψ φ̇ + sin ψ θ̇,

ω′

2 = sin θ sin ψ φ̇ + cos ψ θ̇, (3)

ω′

3 = cos θ φ̇ + ψ̇.

Assuming the nucleus to be γ-rigid (i.e. γ̇ = 0), as in the Davydov and Chaban approach
[12], and considering in particular the axially symmetric prolate case of γ = 0, we see that
the third irrotational moment of inertia J3 vanishes, while the other two become equal
J1 = J2 = 3Bβ2, the kinetic energy of Eq. (1) reaching the form [13,15]

T =
1

2
3Bβ2(ω′2

1 + ω′2
2 ) +

B

2
β̇2 =

B

2

[
3β2(sin2 θ φ̇2 + θ̇2) + β̇2

]
. (4)

It is clear that in this case the motion is characterized by three degrees of freedom.
Introducing the generalized coordinates q1 = φ, q2 = θ, and q3 = β, the kinetic energy
becomes a quadratic form of the time derivatives of the generalized coordinates [13,16]

T =
B

2

3∑
i,j=1

gij q̇iq̇j , (5)

with the matrix gij having a diagonal form

gij =

⎛
⎜⎝ 3β2 sin2 θ 0 0

0 3β2 0
0 0 1

⎞
⎟⎠ . (6)

(In the case of the full Bohr Hamiltonian [11] the square matrix gij is 5-dimensional
and non-diagonal [13,16].) Following the general procedure of quantization in curvilinear
coordinates one obtains the Hamiltonian operator [13,16]

H = −
h̄2

2B
Δ + U(β) = −

h̄2

2B

[
1

β2

∂

∂β
β2 ∂

∂β
+

1

3β2
ΔΩ

]
+ U(β), (7)
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where ΔΩ is the angular part of the Laplace operator

ΔΩ =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
. (8)

The Schrödinger equation can be solved by the factorization

Ψ(β, θ, φ) = F (β) YLM(θ, φ), (9)

where YLM(θ, φ) are the spherical harmonics. Then the angular part leads to the equation

−ΔΩYLM(θ, φ) = L(L + 1)YLM(θ, φ), (10)

where L is the angular momentum quantum number, while for the radial part F (β) one
obtains[

1

β2

d

dβ
β2 d

dβ
−

L(L + 1)

3β2
+

2B

h̄2

(
E − U(β)

)]
F (β) = 0. (11)

As in the case of X(5) [2], the potential in β is taken to be an infinite square well

U(β) =

{
0, 0 ≤ β ≤ βW

∞, β > βW
, (12)

where βW is the width of the well. In this case F (β) is a solution of the equation[
d2

dβ2
+

2

β

d

dβ
+

(
k2 −

L(L + 1)

3β2

)]
F (β) = 0 (13)

in the interval 0 ≤ β ≤ βW , where reduced energies ε = k2 = 2BE/h̄2 [2] have been
introduced, while it vanishes outside. Substituting F (β) = β−1/2f(β) one obtains the
Bessel equation[

d2

dβ2
+

1

β

d

dβ
+

(
k2 −

ν2

β2

)]
f(β) = 0, (14)

where

ν =

√
L(L + 1)

3
+

1

4
, (15)

the boundary condition being f(βW ) = 0. The solution of (13), which is finite at β = 0,
is then

F (β) = FsL(β) =
1
√

c
β−1/2Jν(ks,νβ), (16)

with ks,ν = xs,ν/βW and εs,ν = k2
s,ν , where xs,ν is the s-th zero of the Bessel function of

the first kind Jν(ks,νβW ) and the normalization constant c = β2
W J2

ν+1(xs,ν)/2 is obtained

from the condition
∫ βW

0 F 2
sL(β) β2dβ = 1. The corresponding spectrum is then

Es,L =
h̄2

2B
k2

s,ν =
h̄2

2Bβ2
W

x2
s,ν . (17)

16th Hellenic Symposium on Nuclear Physics

159



4 Dennis Bonatsos, D. Lenis, D. Petrellis, P. A. Terziev and I. Yigitoglu

It should be noticed that in the X(5) case [2] the same Eq. (14) occurs, but with ν =√
L(L+1)

3
+ 9

4
, while in the E(3) Euclidean algebra in 3 dimensions, which is the semidirect

sum of the T3 algebra of translations in 3 dimensions and the SO(3) algebra of rotations
in 3 dimensions [17], the eigenvalue equation of the square of the total momentum, which
is a second-order Casimir operator of the algebra, also leads [17,18] to Eq. (14), but with
ν = L + 1

2
.

From the symmetry of the wave function of Eq. (9) with respect to the plane which is
orthogonal to the symmetry axis of the nucleus and goes through its center, follows that
the angular momentum L can take only even nonnegative values. Therefore no γ-bands
appear in the model, as expected, since the γ degree of freedom has been frozen.

In the general case the quadrupole operator is

T (E2)
μ = t β

[
D2 ∗

μ,0(Ω) cos γ +
1
√

2
[D2 ∗

μ,2(Ω) + D2 ∗
μ,−2(Ω)] sin γ

]
, (18)

where Ω denotes the Euler angles and t is a scale factor. For γ = 0 the quadrupole
operator becomes

T (E2)
μ = t β

√
4π

5
Y2μ(θ, φ). (19)

B(E2) transition rates

B(E2; sL → s′L′) =
1

2L + 1

∣∣∣〈s′L′||T (E2)||sL〉
∣∣∣2 (20)

are calculated using the wave functions of Eq. (9) and the volume element
dτ = β2 sin θ dβdθdφ, the final result being

B(E2; sL → s′L′) = t2
(
CL′ 0

L 0, 2 0

)2
I2
sL;s′L′, (21)

where CL′ 0
L 0, 2 0 are Clebsch–Gordan coefficients and the integrals over β are

IsL;s′L′ =
∫ βW

0
β FsL(β) Fs′L′(β) β2 dβ. (22)

3. NUMERICAL RESULTS AND COMPARISON TO EXPERIMENT

The energy levels of the ground state band (s = 1), as well as of the β1 (s = 2) and
β2 (s = 3) bands, normalized to the energy of the lowest excited state, 2+

1 , are shown
in Fig. 1, together with intraband B(E2) transition rates, normalized to the transition
between the two lowest states, B(E2; 2+

1 → 0+
1 ), while interband transitions are listed in

Table 1.
The energy levels of the ground state band of X(3) are also shown in Fig. 2(a), where

they are compared to the experimental data for 172Os [19] (up to the point of bandcross-
ing) and 186Pt [20]. In the same figure the ground state band of X(5), along with the
experimental data for the N = 90 isotones 150Nd [21], 152Sm [22], 154Gd [23], and 156Dy
[24], which are considered as the best realizations of X(5) [5,7–10], are shown for com-
parison. The energy levels of the β1-band for the same models and nuclei are shown in
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Figure 1. Energy levels of the ground state (s = 1), β1 (s = 2), and β2 (s = 3) bands
of X(3), normalized to the energy of the lowest excited state, 2+

1 , together with intra-
band B(E2) transition rates, normalized to the transition between the two lowest states,
B(E2; 2+

1 → 0+
1 ). Interband transitions are listed in Table 1. See Section 3 for further

discussion.

Fig. 2(b), while existing intraband B(E2) transition rates for the ground state band are
shown in Fig. 2(c). The following comments are now in place.

1) The ground state bands of 172Os and 186Pt are in very good agreement with the X(3)
predictions, while the β1-bands are a little lower. Similarly, the ground state bands of
150Nd, 152Sm, 154Gd, and 156Dy are in very good agreement with the X(5) predictions,
while the β1 bands beyond L = 4 are much lower. This discrepancy is known to be fixed
by considering [25] a potential with linear sloped walls instead of an infinite well potential.
What occured rather unexpectedly is the fact that the β1 bands of the N = 90 isotones
[the best experimental examples of X(5)] from L = 4 upwards agree very well with the
X(3) predictions. This could be interpreted as indication that the bandhead of the β1

band is influenced by the presence of the γ degree if freedom, but the excited levels of this
band beyond L = 4 are not influenced by it. Detailed measurements of intraband B(E2)
transition rates within the β1-bands of these N = 90 isotones could clarify this point.

2) Existing intraband B(E2) transition rates for the ground state band of 172Os (below
the region influenced by the bandcrossing) are in good agreement with X(3), being quite
higher than the 150Nd, 152Sm, and 154Gd rates, as they should. [The B(E2) rates of 156Dy
are known [9] to be in less good agreement with X(5), as also seen in Fig. 2(c).] However,
more intraband and interband transitions (and with smaller error bars) are needed before
final conclusions could be drawn. The same holds for 186Pt, for which experimental
information on B(E2)s is missing [20,26]. The relative branching ratios known in 186Pt
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Table 1
Interband B(E2; Li → Lf ) transition rates for the X(3) model, normalized to the one
between the two lowest states, B(E2; 2+

1 → 0+
1 ).

Li → Lf X(3) Li → Lf X(3) Li → Lf X(3)

02 → 21 164.0
22 → 41 64.5 22 → 21 12.4 22 → 01 0.54
42 → 61 42.2 42 → 41 8.6 42 → 21 0.43
62 → 81 31.1 62 → 61 6.7 62 → 41 0.51
82 → 101 24.4 82 → 81 5.5 82 → 61 0.56
102 → 121 19.9 102 → 101 4.7 102 → 81 0.59

03 → 22 209.1
23 → 42 92.0 23 → 22 16.2 23 → 02 0.67
43 → 62 65.3 43 → 42 12.2 43 → 22 0.47
63 → 82 50.9 63 → 62 10.1 63 → 42 0.52
83 → 102 41.6 83 → 82 8.6 83 → 62 0.57
103 → 122 35.0 103 → 102 7.5 103 → 82 0.61

Table 2
Relative B(E2) branching ratios for the X(3) model compared to existing exprerimental
data [26] for 186Pt.

Li → Lf exp. X(3) Li → Lf exp. X(3)

22 → 02 100 100 42 → 22 100 100
22 → 01 8(1) 0.7 42 → 21 2.6(3) 0.3
22 → 41 68(7) 80 42 → 41 < 12 6

[26] are given in Table 2, being in good agreement with the X(3) predictions.
The placement of the above mentioned nuclei in the symmetry triangle [27] of the

Interacting Boson Model (IBM) [28] can be illuminating. All of the above mentioned
N=90 isotones lie close to the phase coexistence and shape phase transition region of the
IBM, with 152Sm being located on the U(5)-SU(3) side of the triangle [29], while 154Gd
and 156Dy gradually move towards the center of the triangle [30]. 172Os [31] and 186Pt [26]
also appear near the center of the symmetry triangle and close to the transition region of
the IBM.

It should be noticed that the critical character of 186Pt is also supported by the criteria
posed in Ref. [32]. In particular, a relatively abrupt change of the R4 = E(4+

1 )/E(2+
1 )

ratio occurs between 186Pt and 184Pt, as seen in the systematics presented in Ref. [31],
while 0+

2 shows a minimum at 186Pt, as seen in the systematics presented in Ref. [26],
especially if the 0+

2 energies are normalized with respect to the 2+
1 state of each Pt isotope.

Furthermore, 186Pt is located at the point where the crossover of 0+
2 and 2+

γ occurs, as
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Figure 2. (a) Energy levels of the ground state bands of the X(3) and X(5) [2] models,
compared to experimental data for 172Os [19], 186Pt [20], 150Nd [21], 152Sm [22], 154Gd
[23], and 156Dy [24]. The levels of each band are normalized to the 2+

1 state. (b) Same
for the β1-bands, also normalized to the 2+

1 state. (c) Same for existing intraband B(E2)
transition rates within the ground state band, normalized to the B(E2; 2+

1 → 0+
1 ) rate.

The data for 156Dy are taken from Ref. [9]. See Section 3 for further discussion.

seen in the systematics presented in Ref. [26].

4. DISCUSSION

In summary, a γ-rigid (with γ = 0) version of the X(5) model is constructed. The
model is called X(3), since it is proved that only three variables occur in this case, the
separation of variables being exact, while in the X(5) case approximate separation of the
five variables occuring there is performed. The parameter free (up to overall scale factors)
predictions of X(3) are found to be in good agreement with existing experimental data of
172Os and 186Pt, while a rather unexpected agreement of the β1-bands of the X(5) nuclei
150Nd, 152Sm, 154Gd, and 156Dy to the X(3) predictions is observed. The need for further
B(E2) measurements in all of the above-mentioned nuclei is emphasized.
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