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Abstract: The structure of 6Li, 7Li and nLi nuclei is investigated in a model 
space which includes all configurations with oscillator energy up to Ζηω above 
the ground state configuration. The energy spectra and electromagnetic prop­
erties of the low-lying states are determined with various two-body interactions, 
which are derived from the Bonn potential. In addition the calculation deter­
mines the dipole polarizability of7 Li and u Li caused from virtual El excitations 
to the positive parity states of these nuclei. 

1. Introduction 

The static and dynamic electric moments of nuclei are traditionally measured by 
Coulomb excitation1). It has long been established that the quadrupole moments as 
well as the B(E2) values can be affected from virtual excitations to the giant dipole 
state2). In particular, if the dipole state occurs at low excitation energy, it can cause 
a measurable renormalization of the El operator. 

The most careful measurements of the correction due to the dynamic dipole po­
larizability on the B{E2) and the quadrupole moments has been in the case of the 
nucleus 7Li 3 ~ 4 ) . This nucleus has a ground state with J' = 3/2" and a first excited 
state with J* = 1/2". The excited state has no spectroscopic quadrupole moment 
and hence a precise determination of the B{E2) | value for the excitation of the 1/2" 
state over a range of energies will enable one to measure the inelastic dipole polar­
izability. Similarly, a careful measurement of the ground state quadrupole moment 
will enable one to measure the elastic dipole polanzability. The results of various 
measurements are reviewed by Barker et al5) and Voelk and Fick6). 

Recent experiments7) suggest that a component of the dipole resonance, termed 
the soft dipole mode8) or the pygmy resonance9), occurs at a very low excitation in 
n L i . This feature combined with the large r m j radius of 3.16 ± 0.11/m 1 0) have made 
this nucleus the subject of several theoretical investigations. 

* Presented by L.D. Skouras 
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In this paper we present a shell-model study of the natural parity states of 6Li, 
7Li and n Li . The properties of these states are investigated in the space of (0 + 2)hu> 
excitations. For 7Li and nLi we also examine the unnatural parity states for which 
we consider the complete space of (1 + 3)Äu; excitations. The most detailed data exist 
for 7Li and we use them to draw conclusions about the reliability of our model. On 
the other hand, there exist very little data for u Li and thus our results should be 
taken as theoretical predictions. 

The main purpose of our investigation has been to determine the El polarization 
effects on the quadrupole moment of the 3/2" ground state of both 7Li and uLi as 
well as on the B(E2) f value corresponding to the excitation of the 1/2" state of 7Li. 
Several sets of results have been determined corresponding to different hamiltonians. 
To test the reliability of these calculations we have also determined the properties of 
the low-lying states of 6Li. 7Li and uLi and compare the theoretical predictions with 
the existing experimental data. 

In sect. 2 we discuss the details of our calculation, while in sect. 3 we present our 
results. Finally, sect. 4 contains the conclusions of this work. 

2. Details of the calculation 

2.1 DEFINITIONS 

The effective potential which is used to describe El excitation of the projectile in 
Coulomb scattering experiments consists of two parts1) : 

VE2 = Vcoup + Vpol , (1) 

where 

(/I WfOlO = Y^(ME2U)XJ^'Mi(f) , (2) 

(/|VW(r)|z) = ~[6i,P + ^{-\γ·-ύ>τχ}χΙ>Χ{τ)} , (3) 

with 

*#,*(*) = ( 2 J / + i)x/a Σ y^fWiMMJfMj) (4) 

In the above eqs (2)-(4), Ζ is the charge number of the target, f is the distance 
between the two nuclei, while |/) and |») denote the final and initial states of the 
projectile, respectively. 
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The polarization potential (3) consists of a monopole and a quadrupole term. The 

monopole term is defined1) as: 

where 

B(EX]l^f)= u + l (6) 

and \n) are the states which are connected by the El operator with the state \i). 
The quantity τ,·/ in the quadrupole part of Vpoi is the tensor moment of the electric 

polarizability and is defined3) as: 

r " - T\Jj2^W(UJfJu2Jn) — (7) 

From the analyses of the 7Li data5'6) values for four quantities have been extracted. 
These are B(E2; 1 —• 2), r1 2, r n and the static quadrupole moment Qa. We use here 
the notation usually adopted5,6) where 1 refers to the ground state and 2 to the first 
excited state. Q3 is defined as: 

<ifimS!ïêj^T){imii) • (8) 

The experimental values for these four quantities are compared with the predictions 
of the calculation in sect. 3. 

2.2 T H E SHELL-MODEL CALCULATION 

We consider a hamiltonian of the form 

A Λ 1 3 
// = Σ ί ' + Σ ^ + 2 Λ τ η α ; 2 β 2 ~ 2 ^ ' ( 9 ) 
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where t denotes kinetic energy, G is the two-body interaction while A and R stand 

for the mass number and center-of-mass coordinate of the nucleus, respectively. The 

term ^Amu2R2 has been included in the hamiltonian H in order to remove spurious 

state effects11) while the term — \%ω removes the center-of-mass contribution from a 

non-spurious state. The hamiltonian (9) can be written as: 

H = H0 + V , (10) 

where 

#ο = Σ > + ^ ω ν ? ) - φ α ; , V = £((?«,· - ^ ( r · - f·)2) . (11) 

The basis of our calculation consists of all eigenvectors of HQ which have un­

perturbed energy not exceeding by 3Αω the energy of the ground state configuration 

(0.s)4(0p)i4~4. Thus the model space contains 15 single particle orbitals from the Qs up 

to the sag shell of the harmonic oscillator potential. The basis vectors are constructed 

assuming no core state and are represented as 

|Φ) = Κ ? ν τ » , (12) 

where CA denotes a distribution of the A particles among the single particle-orbitals, 

while the index μ distinguishes the vectors which correspond to the same set of 

{CA,J,T} quantum numbers. 

Since the vectors (12) have been constructed using isospin formalism it is conve­

nient to consider in the same formalism the operators EX of sect. 2.1. Thus 

Ελ

μ = Ε£ + Ε£ , (13) 

where 

^λο° = ο Σ ^ ^ ) ' ^λί = ^Σ τ^)Γ. λ Κ λ^) · < 1 4 ) 2 

Thus the matrix elements of the operator EX can be expressed as: 

(JsTjMT\\Ex\\JxTxMT) = 

(2T/ + 1)1/2 (15) 
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where 

Μτ = ^ - , (16) 

Ζ and Ν being the proton and neutron numbers of the nucleus under consideration. 

In (15) and elsewhere a triple bar denotes a matrix element which is reduced in both 

spin and isospin spaces. 
As is evident from (14), the isoscalar part of the El operator is proportional to 

the center-of-mass vector R. Thus the E10 operator connects a non-spurious natural 
parity state to a spurious one, which belongs to the space of the unnatural parity 
states. As a consequence only the isovector part of the El operator is considered in 
determining El matrix elements (15). 

As eqs (5) and (7) indicate, to obtain the matrix elements of Vpoi one needs to 
determine all states \n) which are connected to both \i) and |/) by the El operator. 
The main problem with the determination of these intermediate states \n) is that their 
space consists of the (1 +3)hu> excitations and, consequently, it has a large dimension 
(over 3000 for some states of n L i ) . In addition the relatively few of the states |n) 
which are strongly connected by the El operator to the \i) and \f) states need not 
necessarily be among the lowest in energy. Thus, in principle, one needs to perform 
a full diagonalization of the hamiltonian matrix in the space of (1 + 3)Äu> excitations. 
Apart from the technical difficulties, this solution has the disadvantage that most of 
the eigenstates \n) produced will couple only weakly to the initial and final states. 
To face the above problem, we have adopted the BAGEL approach of Skouras and 
Miither12) which is suitable for selecting specific eigenstates of a hamiltonian matrix 
of large dimension. 

2.3 TWO-BODY INTERACTION AND OSCILLATOR PARAMETER 

In this section we discuss the determination of the two-body interaction G that ap­
pears in eq. (9) and also the manner in which we selected the value of the oscillator 
parameter 6 = (/i/mu.'),/2 which is used to define the basis of single-particle states as 
presented in (11). 

The matrix elements of G have been determined by solving the Bethe-Goldstone 
equation 

G = V + VË^QÏQG <17> 

directly in the basis of harmonic oscillator states13). For the starting energy E3 a 
constant value of -30 MeV has been adopted while the Pauli operator Q was defined 
to exclude any intermediate two-particle configuration which is taken into account in 
our shell-model calculation. 
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For the bare NN interaction V in (17) we have considered two versions of the Bonn 
OBE potential14). The parameters of these potentials have been adjusted to fit the 
NN scattering phase shifts by solving the Thompson equation. The two potentials 
are denoted as A and C in table A.2 of 14) and they mainly differ in the strength of 
the tensor component. In the following we shall denote the G-matrices corresponding 
to potentials A and C by GA and Gc, respectively. 

The above potentials A and C have been used in Dirac-Brueckner-Hartree-Fock 
calculations for light nuclei15). Such calculations have shown that the Dirac spinors 
for nucléons in nuclear medium are substantially different from those of free nucléons. 
The ratio of large to small components for the Dirac spinors in the medium may be 
described in terms of an effective mass m*. It has been shown15) that the value of 
m" = 630MeV is a reasonable choice for light nuclei. In our calculation we use this 
value of m* as well as the value m* = 938A/eK of the free nucléon (which means that 
a change of the Dirac spinors in the medium is ignored) and we shall distinguish the 
corresponding G-matrices by Gm and G, respectively. 

The other parameter that enters our calculation is the oscillator parameter b. 
This is treated as a variational parameter and we adopt the value of b for which the 
binding energy of each nucleus is a minimum. This procedure has been repeated for 
each G-matrix considered in the calculation. 

3. Results of the calculation 

As outlined in sect. 2.3, in our calculation we have considered four types of two-body 
matrix elements. These correspond to using as V in eq. (17) versions A and C of the 
Bonn potential14) and values of 938 MeV and 630 MeV for the parameter m*. In the 
following we shall distinguish the results corresponding to these four sets by GA, G c , 

All the G-matrices described above were determined for the values of 1.6, 1.8, 
2.0 and 2.1 fm for the oscillator parameter 6. Thus, altogether, 16 sets of two-body 
matrix elements were determined and the properties of the low- lying states of 6Li 
and 7Li were calculated for all these interactions. Since a calculation of nLi in the 
large model space under consideration requires a large amount of computer time a 
more restrictive selection has been made for this isotope. 

Table 1 shows the dependence of the binding energy on the interaction and the 
oscillator parameter. The experimental values for this quantity are16) -31.99, -39.25 
and -45.54 MeV for 6Li, 7Li and uLi, respectively. As seen in this table, all interactions 
considered in the calculation greatly underestimate the binding energies of the Li 
isotopes. The differences obtained for the various interactions can be understood 
as follows: (i) The OBE potential with a weaker tensor component (A) yields more 
binding energy than the one with a stronger tensor component (C). This is a general 
feature of BHF calculations for closed shell nuclei, employing phase-shift equivalent 
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potentials15), which obviously is valid also for binding energies obtained in shell-model 
calculations for open shell nuclei, (ii) The modification of the Dirac spinors in the 
medium contained in Gm reduces the calculated binding energy. This is also a feature 
already present in DBHF calculations and which can be understood as a reduction 
of the attractive components due the exchange of a scalar meson (<x). (iii) A smaller 
calculated binding energy is accompanied by a larger value of the oscillator parameter 
b for which the minimum is obtained. In the case of 6Li and 7 Li one observes that 
the minimum value for GA occurs for δ = 1.8 fm although an almost equal value is 
obtained for 6 = 1.6 fm. Thus a proper variational calculation using GA interaction 
most certainly will find the minimum between the above two values of the oscillator 
parameter. A different behavior is observed with the other three interactions where, 
as the results of table 1 indicate, the minima are shifted to larger oscillator values. 
This is particularly evident in the case of the G£ results. This behavior is similar to 
features of DBHF calculations for 1 6 0 , in which one finds that a larger tensor force 
and the inclusion of Dirac effects increase the calculated radii. 

Table 1 
Dependence of the binding energies of the Li isotopes on the oscillator parameter 6 

b(fm) 

GA 

Gc 

Gm 
Gm 

1.6 

-20.54 
-14.46 
-15.04 
-8.79 

1.8 
6Li 

-20.83 
-15.85 
-16.64 
-11.48 

2.0 

-19.49 
-15.43 
-16.49 
-12.17 

2.1 

-15.93 
-12JÌ0 

7Li 
GA -26.47 -26.59 -24.63 
Gc -18.89 -20.51 -19.75 
GA -19.54 -21.56 -21.24 -20.45 
Gc

m -11.77 -15.26 -16.03 -15.74 

Gm 
Gm 

11 Li 
-22.03 
-13.87 

-21.68 
-14.32 

Considering the results of table 1 as those of a restricted variational calculation 
we obtain a natural .selection lor the oscillator parameter to be considered in the 
rest of the calculation. Thus for investigations on 6Li and 7Li employing GA, Gc 

or Gm interactions we adopt 6 = l.S / m , while for the G£ interaction we consider 
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ό = 2.0 fm. The corresponding values for n L i axe 6 = 2.0 fm and b = 2.1 fm for 
G η and G£ interactions, respectively. 

Fig. 1 shows the experimental and theoretical spectra of the low-lying positive 
parity states of 6Li. The theoretical predictions on the electromagnetic properties 
of this nucleus, determined for all interactions discussed above, are compared to the 
experimental data1 7) in table 2. 

> 
5 3-! 
ω 

0 J 

•1.0 
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G* Gc CS 
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Figure 1: Low-lying spectra of 6Li calculated with various G-matrices in the space of 
(0 -f 2)Ηω excitations. All states have positive paxity. Each level is labelled by J,T. 
The experimental information is from Ref. i r ) . 

Table 2 

Electromagnetic properties of 6Li determined with various G-matrices 

Quantity 

7*ma 

μ 
Qs 

£ ( £ 2 ; 3 , 0 - l 
£(M1;0,1 — 1 
£ ( £ 2 ; 2 , 0 - 1 
B(Ml;2,l -+ 1 

0) 
,0) 
0) 

,0) 

Units 
fm 

μ» 
efm2 

WU 
WU 
WU 

WUxlO" 2 

Experiment 
2.09 ± 0.02 

0.8220 
-0.083 

16.5 ± 1 . 3 
8.62 ±0.18 

6.8 ±3.5 
8.35 ±1.5 

GA 

2.34 
0.8530 
-0.302 
4.96 
8.64 
4.06 
0.04 

Gc 

2.39 
0.8453 
-0.407 
5.49 
8.52 
4.24 
0.09 

Gi 
2.40 

0.8540 
-0.099 
5.57 
8.84 
5.26 
2.2 

GÌ 
2.64 

0.8524 
-0.365 
8.35 
8.72 
7.04 
0.06 

As may be seen in fig. 1, the excitation energies of the 6Li states with isospin 
Τ — 0 are rather insensitive on the interaction used and show a good agreement with 
the experimental data, whereas the position of the states with isospin Τ = 1 relative 
to the Τ = 0 states changes quite drastically with the choice of the interaction. This 
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behavior is particularly evident in the case of the J = 0, Τ — 1 state where one 
obtains excitation energies which differ by almost 2 MeV. The excitation energy of 
this state is underestimated using GA and the agreement with the experiment becomes 
worse using Gc, G£ and G£. 

The four interactions produce quite similar results for most of the electromagnetic 
observables displayed in table 2. These results are also in reasonable agreement with 
the experimental data, bearing in mind that in our calculation we consider bare 
electromagnetic operators. One, however, observes that the G^ calculation predicts 
rm3 and B(E2) values which are considerably larger than those obtained with the 
other interactions. This behavior can only partly be attributed to the larger value of 
the oscillator parameters 6 used in the G^ calculation. Therefore we conclude that 
the increase in the calculated radii as we go from interaction GA to G ĵ describes the 
effect already observed in DBHF calculations for closed shell nuclei (see discussion 
above). 

l&i 

> 
«J 

=S 5 

Exp. G* Gc 

GA G£ 

m 

Figure 2: Low-lying spectra of 7Li calculated with various G-matrices (see text) in 
the space of (0 + 2)Ηω excitations. All states have negative parity and Τ = 1/2. Each 
level is labelled by 2J. The experimental information is from Ref. 1 7 ) . 

Fig. 2 shows the experimental and theoretical spectra of the low-lying negative 
parity states of 7Li. Unlike the case of 6Li, discussed above, the four interactions 
considered in the calculation produce spectra which are quite similar to each other 
and also with the experimental one. It seems that the differences observed in the 
Τ = 1 spectrum as compared to the Τ = 0 states of 6Li are getting less important 
for systems with more valence nucléons. In particular, the spectra obtained with the 
G-matrices derived from potential A , independent of the choice of the parameter m \ 
are in close agreement with the data. 
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i.Oi 

O.&l 

LOI 

E (MeV) 

Figure 3: Distribution of the El strength among the Τ = 1/2 positive parity states 
öl Li. Only transitions leading to the ground state 3/2" and to the first excited 
1/2 state are shown. The accumulated strength is normalized to 1 for the complete 
strength in each channel. 



- 1 4 7 -

To calculate the dipole polarizability for 7Li one needs to calculate the unnatural 
parity states which are connected by the El operator to both the ground and first 
excited states of this nucleus. These states have spins l/2+, 3/2+ and 5/2+ while 
their isospin can be either 1/2 or 3/2. As discussed in sect. 2.2, these states are 
determined in the space of (1 + 3)hu> excitations using the BAGEL approach. This 
approach selectively determines the states which have strong £ 1 coupling to the 
ground and first excited states. The results of this calculation are shown in fig. 3, 
which shows the energy position as well as the El strength for the Τ — 1/2 unnatural 
parity states. The results shown in fig. 3 correspond to the £?£ interaction. As 
discussed below, for this interaction one obtains the largest, in magnitude, values of 
the Tij tensors. 

As fig. 3 shows, the El strength is distributed over a large number of states in the 
energy range of 10 to about 70 MeV. One may also observe a spin dependence in the 
distribution. For example, in the case of the l/2+ states about 40% of the strength 
is concentrated in the lowest state at about 9.5 MeV, while in the case of the 3/2+ 

states the strength is distributed over many states and one has to extend to about 25 
MeV to exhaust 50% of the total strength. 

In table 3 we list the theoretical predictions on the electromagnetic properties 
of 7Li for all interactions considered in the calculation. Table 3 also includes the 
predictions of the calculation on the polarizability terms P, r u and τχ2. One should 
remark at this point that with the existing data on rLi it is not possible to obtain an 
estimate for Ρ 6 ) and thus the theoretical predictions for this quantity cannot be yet 
be compared with experiment. 

Table 3 
Electromagnetic properties of 7Li determined with various G-matrices 

Quantity 

'ma 

μ 
£ ( Λ Π ; 1 / 2 - 3 / 2 ) 
B(E2; 1/2 -> 3/2) 
B{E2; 7/2 - 3/2) 

Q. 
B(£2;3/2 - 1/2) Τ 

Ρ 
ru 
7-12 

Units 
fm 

μ» 
WU 
WU 
WU 

efm2 

e2fm4 

fm3 

fm3 

fm3 

Experiment 

2.23 ± 0.02 
3.2564 

2.75 ±0.14 
19.7 ±1.2 

4.3 
-4.00 ± 0.06 
7.27 ±0.12 

-0.12 ±0.07 
-0.148 ±0.012 

GA 

2.41 
3.0789 

2.39 
7.72 
3.69 
-2.54 
3.14 
0.095 
-0.050 
-0.049 

Gc 

2.45 
3.0918 

2.36 
8.74 
4.01 
-2.70 
3.55 
0.109 
-0.056 
-0.055 

Gì 
2.46 

3.1270 
2.39 
9.25 
5.65 
-2.81 
3.76 
0.110 
-0.057 
-0.053 

Gì 
2.71 

3.1339 
2.38 
13.7 
6.15 
-3.39 
5.56 
0.164 
-0.084 
-0.080 

As may be seen in table 3, the four calculations produce very similar values for 
the magnetic moment of the ground state as well as for the B(M1) corresponding 
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to the deexcitation of the first excited state. On the other hand, one observes a 
dependence of the rms, the E2 matrix elements and the dipole polarizability terms 
on the interaction employed. This behavior is more pronounced in the G£ results, 
but one should remember that these were obtained with a larger ò value. Generally, 
the G^ results are in closer agreement with experiment than those obtained with the 
other three interactions. 

10i 

>" 
5 5-
ω 

n-

.7 

5 

3 

3 

7 
3 

7 

3 

5 

1 
3 

1 
3 

Exp. (a) (b) (a) (b) 

CÄ c& 

Figure 4: Low-lying spectra of 7Li calculated with interactions G* and G^ (see text). 
The spectra labelled (a) have been determined in the ΟΆω space, while those labelled 
(b) in the (0 + 2)ku> space. All states have negative parity and Τ = 1/2. Each level 
is labelled by 2J. 

Table 4 
Effects of configuration space on the electromagnetic properties of the low-lying states of ' Li 

Quantity 

B.E 

rma 

μ 
ß ( M l ; l / 2 — 
ß ( £ 2 ; l / 2 - + 
B(E2; 7/2 — 

Qs 
£ ( £ 2 ; 3 / 2 - » 

3/2) 
3/2) 
3/2) 

1/2) Î 

Units 

MeV 
fm 
μ» 

WU 

wu 
WU 

e/m 2 

e2fm4 

Experiment 

39.25 
2.23 ± 0.02 

3.2564 
2.75 ±0.14 

19.7 ±1.2 
4.3 

-4.00 ± 0.06 
7.27 ± 0.12 

Qhu 
14.11 
2.50 

3.1431 
2.45 
4.17 
1.64 

-2.00 
1.70 

Gi 
(0 + 2)hu 

21.24 
2.46 

3.1270 
2.39 
9.25 
4.06 

-2.81 
3.76 

Oftu; 
9.59 
2.78 

3.1339 
2.45 
6.67 
2.61 

-2.46 
2.71 

Gì 
(0 + 2)Ηω 

16.03 
2.71 

3.1375 
2.38 
13.7 
6.15 

-3.39 
5.56 

We conclude our study of 7Li by examining the effects of configuration space on 
the properties of this nucleus. To study these effects we made additional calculations 
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in the space of ΟΆω configurations for the natural parity states and ϊΗω for the 

unnatural parity ones. In fig. 4 we compare the low-lying energy spectrum obtained 

in the restricted space with that of the extended space while table 4 lists the remaining 

properties of the natural parity states. As the results shown in both fig. 4 and table 

4 indicate, there is a drastic improvement in the theoretical predictions when one 

extends the model space. 

The polarizability quantities Τχ2, ru and Ρ have also been calculated for different 

choices of model spaces and the results are shown in table 5. In one calculation, 

termed "small" in the table, the natural parity states have been calculated in the Oftw 

space and the unnatural in the lku> space. In another calculation, termed "medium" 

in table 5, the space of the natural space is extended to (0 + 2)Κω excitations, while 

the unnatural parity states are again determined in the ΙΑω space. Finally, "large" 

in table 5 denotes the results obtained in the complete space used in this calculation. 

Table 5 

Effects of configuration space on the dipole polarizability of 7Li 

Space 

Small 
Medium 

Large 
Experiment 

Τΐ2 {J™3) 
-0.0431 
-0.0409 
-0.0801 
-0.148 

ru (/m3) 
-0.0463 
-0.0432 
-0.0838 

-0.12 

Ρ (/m3) 

0.197 
0.095 
0.164 

As may be seen in table 5, the monopole polarizability Ρ obtains its maximum 
value in the small space. On the other hand, the values obtained in this space for the 
two quadrupole tensors are about 50% in magnitude of those obtained in the complete 
space. The smallest values in magnitude are obtained for all three quantities in the 
medium space calculation. The reason for this behavior is twofold: i) the coupling 
between 2hu> and Ιΐιω configurations is weak and ii) there is a considerable increase 
in the energy denominators in eqs (5) and (7) as can be deduced from the increase of 
binding energies listed in table 4. 

The results in both tables 4 and 5 clearly suggest the importance of high-lying 
configurations which affect both the properties of the low-lying states, as well as the 
polarizability effects. Extrapolating this behavior one expects a further improvement 
in the shell-model results if even higher configurations, like 4ftu> for the natural parity 
states and 5Ηω for the unnatural parity ones could be included. Such an enlargement 
of the model space could most probably make the predictions of the shell-model 
similar to those of the cluster model. 

The nucleus n L i is known8) to be a loosely bound system with a very small 
two-neutron separation energy. Therefore, the need for considering a very large shell-
model space would be more pronounced for this nucleus than for 7Li. Hence, we do not 
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expect our parameter free calculation to account for all the properties of n L i despite 
the fact that we employ a space in which all configurations up to 3Ηω excitation are 
included. 

From the available experimental data on u L i , one knows that this nucleus has 
a very large rms value of 3.16 ± 0.11 fm 1 0) and in addition there is evidence that 
the first excited state at 1.2 MeV has positive parity18). From the 7Li investigation, 
described above, we know that such effects are best described in our model if one 
uses the G£ and (?£ interactions. Therefore, the results to be discussed below were 
obtained with the use of these two interactions. 

Fig. 5 shows the predictions of our calculation on the low-energy spectrum of n L i . 
As this figure shows the calculation predicts that the first excited state of n Li is a 
1/2— state followed by a series of positive parity states the lowest of which, a 3/2+, 
appears at about 4 MeV. As discussed above, one expects that the results shown in 
fig. 5 could change considerably by the inclusion of higher configurations in the model 
space. 

Figure 5: Low-lying spectra of n L i calculated with interactions G* and (?£ (see 
text). All states have Τ = 5/2. Each level is labelled by 2 J \ 

Fig. 6 shows the energy position and the distribution of £1 transition strengths 
to the ground state for the Τ = 5/2 positive parity states of n Li . The results shown 
in fig. 6 have been obtained using the G„ interaction which, as evidenced from fig. 
5, produces lower excitation energies for the unnatural parity states. A comparison 
of the distributions shown in figs. 3 and 6 shows a significant difference between 

Li and Li. In the latter, particularly in the 3/2+ case, one observes a low-energy 
component in the distribution. Specifically, the lowest 3/2+ state, predicted to be at 
3.86 MeV, carries about 4% of the total El strength. This feature could be interpreted 
to correspond to the soft dipole mode speculated for this nucleus8"9). 
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Table 6 
Properties of u L i 

Quantity 
rms (fm) 

Qs (e/m2) 
τη (/m3) 
Ρ (fm3) 

Exper. 
3.16 ±0.11 

3.6673 ± 0.0025 
-3.12 ±0.45 

"G* 

2.81 
3.6908 
-3.48 

-0.0149 
0.238 

G 
2.97 

3.6890 
-3.92 

-0.0624 
0.375 
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Figure 6: Distribution of the El strength among the Τ = 5/2 positive parity states 

of n L i . Only transitions leading to the ground state are shown. 

Finally, in table 6 we summarize the predictions of our calculation regarding the 
ground state properties of n L i . As this table shows the calculation accounts satisfac­
torily for the rma and the magnetic and quadrupole moments of this nucleus. This is 
particularly true for the rms value obtained with the Gc

m interaction. It is interesting 
also to note in table 6 that the calculation predicts quite larger Ρ values than those 
obtained for 7Li with the same interactions. This should be attributed to a) that a 
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larger b value is used in the n L i calculation and b) that the excitation energy of the 
positive parity states is greatly reduced. On the other hand the n Li calculations pre­
dict smaller r n values than those obtained for 7Li. This behavior should be attributed 
to the strong cancellation among the contributions of the various J, Τ positive parity 
states. It would be of considerable interest if values of Ρ and Tn were obtained in 
future experiments on u L i , since these will provide a useful test of our calculation. 

Conclusions 

Results of shell-model calculations for the isotopes 6Li, 7Li and ^Li are presented, 
which consider configurations within various major shells. Realistic hamiltonians 
are considered, which contain the kinetic energy and a NN interaction derived from 
modern OBE potentials14). The effects of NN short-range correlations are taken into 
account by solving the Bethe-Goldstone equation for these potentials, considering 
a Pauli operator which is consistent with the shell-model configurations taken into 
account. No further renormalization of the hamiltonian and the operators for the 
electromagnetic transitions has been made since it is the aim to account for those 
long-range correlations by a sufficiently large shell-model space. The main conclusions 
can be summarized as follows: 

• The bulk properties (binding energies, radii) calculated for the open shell nuclei 
show a similar dependence on the OBE interaction used as it has been observed 
in DBHF calculations for closed shell nuclei: NN interactions with a stronger 
tensor component yield less binding energy as a phase-shift equivalent potential 
with a weaker tensor force; the modification of the Dirac spinors for the nucléons 
in the medium reduces the calculated binding energy; a smaller binding energy 
is correlated with a larger value for the radius. 

• The calculated excitation spectra are weakly depending on the NN interaction. 
Only in the case of 6Li a strong dependence of the energies for the states with 
isospin Τ = 1 relative to those with Τ — 0 is observed. A good agreement with 
the experimental data is achieved if a large model space is considered. 

• Also the calculated electromagnetic properties show a good agreement with the 
empirical data, keeping in mind that the present calculation does not contain 
any adjustable parameter. 

• The results of the present investigation clearly indicate that the polarizability 
tensors r u and r 1 2 for 7Li depend strongly on the model space. Thus it appears 
that to improve further the agreement with the experimental data one needs 
to go beyond those model spaces considered in the present approach. Such an 
expansion of the model space is currently very difficult to attempt due to the 
exceedingly large number of shell-model configurations involved. 
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