Quarkyonic equation of state with momentum-dependent interaction and neutron star structure


Published: Jun 2, 2025
Keywords:
Quarkyonic matter equation of state sound velocity
Konstantinos Folias
Charalambos Moustakidis
Abstract

The structure and basic properties of dense nuclear matter still remain one of the open problems of physics. In particular, the composition of the matter that composes neutron stars is under theoretical and experimental investigation. Among the theories that have been proposed, apart from the classical one where the composition is dominated by hadrons, the existence or coexistence of free quark matter is a dominant guess. An approach towards this solution is the phenomenological view according to which the existence of quarkyonic matter plays a dominant role in the construction of the equation of state (EOS). In this paper we propose a phenomenological model for quarkyonic matter, borrowed from corresponding applications in hadronic models, where the interaction in the quarkyonic matter depends not only on the position but also on the momentum of the quarkynions. This consideration, as we demonstrate, can have a dramatic consequence on the shape of the EOS and thus on the properties of neutron stars.

Article Details
  • Section
  • Oral contributions
References
Ch.C. Moustakidis, Phys. Rev. C 76,025805 (2007); doi: 10.1103/PhysRevC.76.025805 DOI: https://doi.org/10.1103/PhysRevC.76.025805
D.C. Duarte, et al., Phys. Rev. C 107, 065201 (2023); doi: 10.1103PhysRevC.107.065201
G. Cao, Phys. Rev. D 105, 114020 (2022); doi: 10.1103/PhysRevD.105.114020 DOI: https://doi.org/10.1103/PhysRevB.105.064418
K.S. Jeong, et al., Phys. Rev. C 101, 035201(2020); doi: 10.1103/PhysRevC.101.035201 DOI: https://doi.org/10.1103/PhysRevC.101.035201
L. McLerran, et al., Phys. Rev. Lett. 122, 122701(2019); doi: 10.1103/PhysRevLett.122.122701 DOI: https://doi.org/10.1103/PhysRevLett.122.122701
L. McLerran, Acta Phys. Pol. B 51,1067-1077 (2020); doi: 10.5506/APhysPolB.51.1067 DOI: https://doi.org/10.5506/APhysPolB.51.1067
K. Fukushima, T. Kojo, Astrophys. J. 817, 180 (2016); doi: 10.3847/0004-637X/817/2/180 DOI: https://doi.org/10.3847/0004-637X/817/2/180
V. Koch, et al., Phys. Rev. C 110, 025201 (2024); doi: 10.1103/PhysRevC.110.025201 DOI: https://doi.org/10.1103/PhysRevC.110.025201
T. Zhao, J.M. Lattimer, Phys. Rev. D 102, 023021(2020); doi: https://doi.org/10.1103/PhysRevD.102.023021 DOI: https://doi.org/10.1103/PhysRevD.102.023021
J. Margueron, et al., Phys. Rev. C 104, 055803 (2021); doi: 10.1103/PhysRevC.104.055803 DOI: https://doi.org/10.1103/PhysRevC.104.055803
H.T. Cromartie, et al, Nature Astronomy 4, 72 (2019); doi: 10.1038/s41550-019-0880-2 DOI: https://doi.org/10.1038/s41550-019-0880-2
J. Antoniadis, et al., Science 340, 6131 (2013); doi: 10.1126/science.1233232 DOI: https://doi.org/10.1126/science.1233232
P. Laskos-Patkos ,et al., Phys. Rev. D 109, 063017 (2024); doi: 10.1103PhysRevD.109.063017
T. Salmi, et al., The Astrophysical Journal 941, 150 (2022); doi: 10.3847/1538-4357/ac983d DOI: https://doi.org/10.3847/1538-4357/ac983d
M.C. Miller, et al., The Astrophys. Journ. Lett. 918, L28 (2021); doi: 10.3847/2041-8213/ac089b DOI: https://doi.org/10.3847/2041-8213/ac089b
B.P. Abbott, et al., Multi-messenger observations of a binary neutron star merger, Phys. Rev. Lett. 116, 061102 (2017); doi: 10.1103/PhysRevLett.116.061102 DOI: https://doi.org/10.1103/PhysRevLett.116.061102