Momentum dependence of in-medium potentials: A solution to the hyperon puzzle in neutron stars


Δημοσιευμένα: Ιουν 2, 2025
Arsenia Chorozidou
Theodoros Gaitanos
Περίληψη

Neutron stars offer a great opportunity to study highly compressed hadronic matter experimentally and theoretically. However, the so-called hyperon-puzzle arises at neutron star densities. The hyperon coexistence with other particles in compressed matter softens the equation of state and many widely accepted models fail to reproduce precise observations of large neutron star masses. Here, we propose a mechanism to retain the stiffness of the high-density state with hyperons by considering the explicit momentum dependence of their in-medium potentials. Our approach modifies conventional strangeness threshold conditions and generates threshold effects on hyperons in high-density matter. We demonstrate these effects within the nonlinear derivative model, which incorporates baryon momentum-dependent fields based on empirical and microscopic studies. It turns out that even soft momentum-dependent strangeness fields do prohibit their populations in neutron star matter. The generic momentum dependence of strangeness potentials, as modeled by the nonlinear derivative approach, is crucial for resolving the long-standing hyperon-puzzle in neutron stars.

Λεπτομέρειες άρθρου
  • Ενότητα
  • Oral contributions
Αναφορές
P. Demorest, et al., Nature (London) 467, 1081 (2010); doi: 10.1038/nature09466 DOI: https://doi.org/10.1038/nature09466
J. Antoniadis, et al., Science 340, 1233232 (2013); doi: 10.1126/science.1233232 DOI: https://doi.org/10.1126/science.1233232
H.T. Cromartie, et al., Nat. Astron. 4, 72 (2020); doi: 10.1038/s41550-019-0880-2 DOI: https://doi.org/10.1038/s41550-019-0880-2
R.W. Romani, et al., Astrophys. J. Lett. 934, L17 (2022); doi: 10.3847/2041-8213/ac8007 DOI: https://doi.org/10.3847/2041-8213/ac8007
D. Lonardoni, et al., Phys. Rev. Lett. 114, 092301 (2015); doi: 10.1103/PhysRevLett.114.092301 DOI: https://doi.org/10.1103/PhysRevLett.114.092301
D. Gerstung, et al. Eur. Phys. J. A 56, 175 (2020); doi: 10.1140/epja/s10050-020-00180-2 DOI: https://doi.org/10.1140/epja/s10050-020-00180-2
T. Gaitanos, et al., Nucl. Phys. A 899, 133 (2013); doi: 10.1016/j.nuclphysa.2013.01.002 DOI: https://doi.org/10.1016/j.nuclphysa.2013.01.002
T. Gaitanos, et al., Nucl. Phys. A 878, 49 (2012); doi: 10.1016/j.nuclphysa.2012.01.013 DOI: https://doi.org/10.1016/j.nuclphysa.2012.01.013
T. Gaitanos, et al., Nucl. Phys. A 940, 181 (2015); doi: 10.1016/j.nuclphysa.2015.04.006 DOI: https://doi.org/10.1016/j.nuclphysa.2015.04.006
S. Petschauer, et al., Eur. Phys. J. A 52, 15 (2016); doi: 10.1140/epja/i2016-16015-4 DOI: https://doi.org/10.1140/epja/i2016-16015-4
N. Glendenning, Astrophys. J. 293, 470 (1985); doi: 10.1086/163253 DOI: https://doi.org/10.1086/163253
T. Gaitanos & A. Chorozidou, Nucl. Phys. A 1008, 122153 (2021); doi: 10.1016/j.nuclphysa.2021.122153 DOI: https://doi.org/10.1016/j.nuclphysa.2021.122153
A. Chorozidou & T. Gaitanos, Phys. Rev. C 109, L032801 (2024); doi: 10.1103/PhysRevC.109.L032801
A. Chorozidou & T. Gaitanos, Phys. Rev. C 109, L032801 (2024); doi: 10.1103/PhysRevC.109.L032801 DOI: https://doi.org/10.1103/PhysRevC.109.L032801