The Temperature-dependent Relative Self-Absorption technique: experimental setup and analysis simulation
Περίληψη
In the present proceedings analysis simulations of the Temperature-dependent Relative Self-Absorption (TRSA) technique are presented together with the experimental setup developed at the Technische Universität Darmstadt dedicated for TRSA measurements. The analysis simulations show that precise level width measurements can be achieved, with uncertainties down to some parts per thousand
Λεπτομέρειες άρθρου
- Πώς να δημιουργήσετε Αναφορές
-
Koseoglou, P., Prifti, K., Isaak, J., Pietralla, N., Cortés, M. L., & Werner, V. (2025). The Temperature-dependent Relative Self-Absorption technique: experimental setup and analysis simulation. Annual Symposium of the Hellenic Nuclear Physics Society, 31, 14–20. https://doi.org/10.12681/hnpsanp.8086
- Τεύχος
- Τόμ. 31 (2025): HNPS2024
- Ενότητα
- Oral contributions

Αυτή η εργασία είναι αδειοδοτημένη υπό το CC Αναφορά Δημιουργού – Μη Εμπορική Χρήση – Όχι Παράγωγα Έργα 4.0 4.0.
Αναφορές
U. Friman-Gayer, et al., Phys. Rev. Lett. 126, 102501 (2021); doi: 10.1103/PhysRevLett.126.102501
DOI: https://doi.org/10.1103/PhysRevLett.126.102501
R. Metzger, Prog. Nucl. Phys. 7, 53 (1959).
N. Pietralla, et al., Phys. Rev. C 58, 796 (1998); doi: 10.1103/PhysRevC.58.796
DOI: https://doi.org/10.1103/PhysRevC.58.796
A. Zilges, et al., Prog. Part. Nucl. Phys. 122, 103903 (2022); doi: 10.1016/j.ppnp.2021.103903
DOI: https://doi.org/10.1016/j.ppnp.2021.103903
C. Romig, et al., Phys. Lett. B 744, 369 (2015); doi: 10.1016/j.physletb.2015.04.013
DOI: https://doi.org/10.1016/j.physletb.2015.04.013
P. Debye, Annalen der Physik 344, 789 (1912); doi: 10.1002/andp.19123441404
DOI: https://doi.org/10.1002/andp.19123441404
C. Romig, Ph.D. thesis, Technische Universität Darmstadt, Darmstadt (2015); url: http://tuprints.ulb.tu-darmstadt.de/4446/
W.E. Lamb, Phys. Rev. 55, 190 (1939); doi: 10.1103/PhysRev.55.190
DOI: https://doi.org/10.1103/PhysRev.55.190
R. Moreh, et al., Phys. Rev. B 56, 187 (1997); doi: 10.1103/PhysRevB.56.187
DOI: https://doi.org/10.1103/PhysRevB.56.187
P. Koseoglou, et al., (in prep.).
N. Pietralla, et al., Phys. Rev. C 51, 1021 (1995), doi: 10.1103/PhysRevC.51.1021
DOI: https://doi.org/10.1103/PhysRevC.51.1021
U. Friman-Gayer, ries code: resonances integrated over energy and space (2023). url: https://github.com/uga-uga/ries/
K. Sonnabend, et al., Nucl. Instr. Meth. Phys. Res. A 640, 6 (2011); doi: 10.1016/j.nima.2011.02.107
DOI: https://doi.org/10.1016/j.nima.2011.02.107
K. Prifti, private communication (2024).
N. Pietralla, Nucl. Phys. News 28, 4 (2018), doi: 10.1080/10619127.2018.1463013
DOI: https://doi.org/10.1080/10619127.2018.1463013
A. Richter et al., Proc. EPAC 96, Barcelona 110 (1996).