The Temperature-dependent Relative Self-Absorption technique: experimental setup and analysis simulation
Published:
Jun 2, 2025
Keywords:
nuclear resonance fluorescence temperature-dependent relative self-absorption temperature-controlled target system
Abstract
In the present proceedings analysis simulations of the Temperature-dependent Relative Self-Absorption (TRSA) technique are presented together with the experimental setup developed at the Technische Universität Darmstadt dedicated for TRSA measurements. The analysis simulations show that precise level width measurements can be achieved, with uncertainties down to some parts per thousand
Article Details
- How to Cite
-
Koseoglou, P., Prifti, K., Isaak, J., Pietralla, N., Cortés, M. L., & Werner, V. (2025). The Temperature-dependent Relative Self-Absorption technique: experimental setup and analysis simulation. HNPS Advances in Nuclear Physics, 31, 14–20. https://doi.org/10.12681/hnpsanp.8086
- Issue
- Vol. 31 (2025): HNPS2024
- Section
- Oral contributions

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
U. Friman-Gayer, et al., Phys. Rev. Lett. 126, 102501 (2021); doi: 10.1103/PhysRevLett.126.102501
DOI: https://doi.org/10.1103/PhysRevLett.126.102501
R. Metzger, Prog. Nucl. Phys. 7, 53 (1959).
N. Pietralla, et al., Phys. Rev. C 58, 796 (1998); doi: 10.1103/PhysRevC.58.796
DOI: https://doi.org/10.1103/PhysRevC.58.796
A. Zilges, et al., Prog. Part. Nucl. Phys. 122, 103903 (2022); doi: 10.1016/j.ppnp.2021.103903
DOI: https://doi.org/10.1016/j.ppnp.2021.103903
C. Romig, et al., Phys. Lett. B 744, 369 (2015); doi: 10.1016/j.physletb.2015.04.013
DOI: https://doi.org/10.1016/j.physletb.2015.04.013
P. Debye, Annalen der Physik 344, 789 (1912); doi: 10.1002/andp.19123441404
DOI: https://doi.org/10.1002/andp.19123441404
C. Romig, Ph.D. thesis, Technische Universität Darmstadt, Darmstadt (2015); url: http://tuprints.ulb.tu-darmstadt.de/4446/
W.E. Lamb, Phys. Rev. 55, 190 (1939); doi: 10.1103/PhysRev.55.190
DOI: https://doi.org/10.1103/PhysRev.55.190
R. Moreh, et al., Phys. Rev. B 56, 187 (1997); doi: 10.1103/PhysRevB.56.187
DOI: https://doi.org/10.1103/PhysRevB.56.187
P. Koseoglou, et al., (in prep.).
N. Pietralla, et al., Phys. Rev. C 51, 1021 (1995), doi: 10.1103/PhysRevC.51.1021
DOI: https://doi.org/10.1103/PhysRevC.51.1021
U. Friman-Gayer, ries code: resonances integrated over energy and space (2023). url: https://github.com/uga-uga/ries/
K. Sonnabend, et al., Nucl. Instr. Meth. Phys. Res. A 640, 6 (2011); doi: 10.1016/j.nima.2011.02.107
DOI: https://doi.org/10.1016/j.nima.2011.02.107
K. Prifti, private communication (2024).
N. Pietralla, Nucl. Phys. News 28, 4 (2018), doi: 10.1080/10619127.2018.1463013
DOI: https://doi.org/10.1080/10619127.2018.1463013
A. Richter et al., Proc. EPAC 96, Barcelona 110 (1996).