Recent results on elastic scattering and single-neutron stripping reaction in the 18O+48Ti collision at 275 MeV
Published:
Jul 31, 2024
Keywords:
Nuclear Reactions Heavy Ions Elastic Scattering Transfer Reactions Magnetic Spectrometer
Abstract
A global study of the 18O+48Ti collision at 275 MeV was carried out within the NUMEN and NURE experimental campaigns by measuring the complete net of nuclear reactions which may be involved in the 48Ti→48Ca double charge exchange transition. The relevant experiment was visualized at the INFN-LNS in Catania, where angular distribution measurements for a plethora of reaction channels were performed by means of the MAGNEX large acceptance magnetic spectrometer. The present work provides an overview of the analyses of the elastic scattering and one-neutron transfer reaction channels.
Article Details
- How to Cite
-
Sgouros, O., Brischetto, G. A., Cappuzzello, F., Cavallaro, M., Carbone, D., Agodi, C., Calvo, D., Chavez Lomeli, E. R., Ciraldo, I., Cutuli, M., De Gregorio, G., Delaunay, F., Djapo, H., Eke, C., Finocchiaro, P., Fisichella, M., Gargano, A., Guazzelli, M. A., Hacisalihoglu, A., Linares, R., Lubian, J., Medina, N. H., Moralles, M., Oliveira, J. R. B., Pakou, A., Pandola, L., Soukeras, V., Souliotis, G., Spatafora, A., Torresi, D., Yildirim, A., & Zagatto, V. A. B. (2024). Recent results on elastic scattering and single-neutron stripping reaction in the 18O+48Ti collision at 275 MeV. HNPS Advances in Nuclear Physics, 30, 148–153. https://doi.org/10.12681/hnpsanp.6257
- Issue
- Vol. 30 (2024): HNPS2023
- Section
- Oral contributions
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
J. Barea et al., Phys. Rev Lett. 109, 042501 (2012), doi: 10.1103/PhysRevLett.109.042501
J.D. Vergados et al., Int. J. Mod. Phys. E 25, 1630007 (2016), doi: 10.1142/S0218301316300071
H. Lenske et al., Prog. Part. Nucl. Phys. 109, 103716 (2019), doi: 10.1016/j.ppnp.2019.103716
F. Cappuzzello et al., Prog. Part. Nucl. Phys. 128, 103999 (2023), doi: 10.1016/j.ppnp.2022.103999
J.B. Albert et al., Nature 510, 229 (2014), doi: 10.1038/nature13432
A. Gando et al., Phys. Rev. Lett. 117, 082503 (2016), doi: 10.1103/PhysRevLett.117.082503
M. Agostini et al., Phys. Rev. Lett. 125, 252502 (2020), doi: 10.1103/PhysRevLett.125.252502
J. Engel et al., Rep. Prog. Phys. 80, 046301 (2017), doi: 10.1088/1361-6633/aa5bc5
H. Ejiri et al., Phys. Rep. 797, 1 (2019), doi: 10.1016/j.physrep.2018.12.001
F. Cappuzzello et al., Eur. Phys. J. A 54, 72 (2018), doi: 10.1140/epja/i2018-12509-3
A. Belley et al., Phys. Rev. Lett. 126, 042502 (2021), doi: 10.1103/PhysRevLett.126.042502
E. Santopinto et al., Phys. Rev. C 98, 061601(R) (2018), doi: 10.1103/PhysRevC.98.061601
F. Cappuzzello et al., Eur. Phys. J. A 51, 145 (2015), doi: 10.1140/epja/i2015-15145-5
V. Soukeras et al., Results in Physics 28, 104691 (2021), doi: 10.1016/j.rinp.2021.104691
M. Cavallaro et al., Front. Astron. Space Sci. 8, 659815 (2021), doi: 10.3389/fspas.2021.659815
D. Carbone et al., Phys. Rev. C 102, 044606 (2020), doi: 10.1103/PhysRevC.102.044606
J.L. Ferreira et al., Phys. Rev. C 103, 054604 (2021), doi: 10.1103/PhysRevC.103.054604
O. Sgouros et al., Phys. Rev. C 104, 034617 (2021), doi: 10.1103/PhysRevC.104.034617
S. Calabrese et al., Phys. Rev. C 104, 064609 (2021), doi: 10.1103/PhysRevC.104.064609
I. Ciraldo et al., Phys. Rev. C 105, 044607 (2022), doi: 10.1103/PhysRevC.105.044607
S. Burrello et al., Phys. Rev. C 105, 024616 (2022), doi: 10.1103/PhysRevC.105.024616
A. Spatafora et al., Phys. Rev. C 107, 024605 (2023), doi: 10.1103/PhysRevC.107.024605
J.L. Ferreira et al., Phys. Rev. C 105, 014630 (2022), doi: 10.1103/PhysRevC.105.014630
M. Cavallaro et al., PoS BORMIO 2017, 015 (2017), doi: 10.22323/1.302.0015
G.A. Brischetto et al., Phys. Rev. C 109, 014604 (2024), doi: 10.1103/PhysRevC.109.014604
O. Sgouros et al., Phys. Rev. C 108, 044611 (2023), doi: 10.1103/PhysRevC.108.044611
O. Sgouros, Il Nuovo Cimento 45 C, 70 (2022), doi: 10.1393/ncc/i2022-22070-3
F. Cappuzzello et al., Eur. Phys. J. A 52, 167 (2016), doi: 10.1140/epja/i2016-16167-1
D. Torresi et al., Nucl. Instrum. Meth. A 989, 164918 (2021), doi: 10.1016/j.nima.2020.164918
F. Cappuzzello et al., Nucl. Instrum. Meth. A 621, 419 (2010), doi: 10.1016/j.nima.2010.05.027
F. Cappuzzello et al., Nucl. Instrum. Methods A 638, 74 (2011), doi: 10.1016/j.nima.2011.02.045
I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988), doi: 10.1016/0167-7977(88)90005-6
M.A. Candido Ribeiro et al., Phys. Rev. Lett 78, 3270 (1997), doi: 10.1103/PhysRevLett.78.3270
D. Pereira et al., Nucl. Phys. A 826, 211 (2009), doi: 10.1016/j.nuclphysa.2009.06.015
D. Pereira et al., Phys. Lett. B 710, 426 (2012), doi: 10.1016/j.physletb.2012.03.032
L.M. Fonseca et al., Phys. Rev. C 100, 014604 (2019), doi: 10.1103/PhysRevC.100.014604
A. Spatafora et al., Phys. Rev. C 100, 034620 (2019), doi: 10.1103/PhysRevC.100.034620
N. Shimizu et al., Comput. Phys. Commun. 244, 372 (2019), doi: 10.1016/j.cpc.2019.06.011
Y. Otsuno et al., Phys. Rev. C 83, 021301(R) (2011), doi: 10.1103/PhysRevC.83.021301
Y. Otsuno et al., Phys. Rev. C 86, 051301(R) (2012), doi: 10.1103/PhysRevC.86.051301
A.E. Ball et al., Nucl. Phys. A 183, 472 (1972), doi: 10.1016/0375-9474(72)90351-X
A. Poves and A. Zuker, Phys. Rep. 70, 235 (1981), doi: 10.1016/0370-1573(81)90153-8