Singlet and Triplet pairing in neutron matter


Published: Jul 31, 2024
Keywords:
Nuclear Astrophysics, Neutron stars, Superfluidity, Neutron Star Cooling
Eckhard Krotscheck
Jiawei Wang
Panagiota Papakonstantinou
Abstract

The presence of superfluidity in neutron stars can affect the cooling and dynamics of neutron stars in various ways. Model calculations employing realistic nuclear potentials in Bardeen-Cooper-Schrieffer theory generally suggest the development of a 1S0 pairing gap at low densities and a 3P2-3F2 pairing gap at higher densities. We have evaluated the pairing interaction by summing the "parquet" Feynman diagrams which include both ladder and ring diagrams systematically, plus a set of important non-parquet diagrams, making this the most comprehensive diagram-based approach presently available. Our results suggest a modest suppression of the 1S0 pairing gap, a radical suppression of the 3P2-3F2 triplet pairing gap, and an enhancement of 3P0 pairing.

Article Details
  • Section
  • Oral contributions
References
D. Page and S. Reddy, Ann. Rev. Nucl. Part. Sci. 56, 327 (2006)
D. Page et al., in Novel Superfluids, Vol. 2, edited by K.-H. Bennemann and J.B. Ketterson (Oxford University Press, Oxford, UK, 2015) Chap. 21, pp. 505-579
D.G. Yakovlev and P. Haensel, Astronomy and Astrophysics 407, 259 (2003)
B.D. Day, Phys. Rev. C 24, 1203 (1981)
R.B. Wiringa, V.G.J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995)
A.D. Jackson and T. Wettig, Phys. Rep. 237, 1 (1993)
H.A. Bethe and J. Goldstone, Proc. R. Soc. London, Ser. A 238, 551 (1957)
A. Sedrakian and J.W. Clark, EPJ A 55, 167 (2019)
G.C. Strinati et al., Phys. Rep. 738, 1 (2018)
M. Baldo et al., Phys. Rev. C 58, 192 (1998)
V.A. Khodel, V.V. Khodel, and J.W. Clark, Nucl. Phys. A 598, 390 (1996)
J.W. Clark et al., Phys. Lett. B 61, 331 (1976)
J.M.C. Chen et al., Nucl. Phys. A 555, 59 (1993)
J. Wambach, T. Ainsworth, and D. Pines, Nucl. Phys. A 555, 128 (1993)
H.-J. Schulze et al., Phys. Lett. B 375, 1 (1996)
A. Schwenk and B. Friman, Phys. Rev. Lett. 92, 082501 (2004)
E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969)
E. Krotscheck and J.W. Clark, Nucl. Phys. A 333, 77 (1980)
S. Fantoni, Nucl. Phys. A 363, 381 (1981)
H.-J. Schulze, A. Polls, and A. Ramos, Phys. Rev. C 63, 044310 (2001)
D. Ding et al., Phys. Rev. C 94, 025802 (2016)
A. Rios, A. Polls, and W. H. Dickhoff, J. Low Temp. Phys. 189, 234 (2017)
A. Gezerlis and J. Carlson, Phys. Rev. C 77, 032801(R) (2008)
E. Krotscheck and J. Wang, Phys. Rev. C 103, 035808 (2021)
T. Takatsuka and R. Tamagaki, Progress of Theoretical Physics 46, 114 (1971)
E. Krotscheck et al., Phys. Rev. C 109, 015803 (2024)
R. Tamagaki, Prog. Theor. Phys. 44, 905 (1970)
T. Takatsuka, Progress of Theoretical Physics 48, 1517 (1972)
E. Krotscheck and J. Wang, Phys. Rev. C 105, 034345 (2022)
A. Gezerlis, C. J. Pethick, and A. Schwenk, in Novel Superfluids, Vol. 2, edited by K.H. Bennemann and J.B. Ketterson (Oxford University Press, 2014) Chap. 22, pp. 580-615