Ion Traps for Nuclear Decay Studies: a design for a handheld Electron Beam Ion Trap (EBIT)


HNPS Advances in Nuclear Physics vol. 29 (HNPS2022)
Published: May 5, 2023
Keywords:
Astrophysics Plasma Physics, EBIT, Nuclear Decay EBIT Nuclear Decay
Agatino Musumarra
https://orcid.org/0000-0002-5766-9069
Cristian Massimi
https://orcid.org/0000-0003-2499-5586
Maria Grazia Pellegriti
Francesco Leone
https://orcid.org/0000-0001-7626-3788
Abstract

Nuclear decay studies of ionized species are of paramount importance in many astrophysical scenarios: from Big-Bang Nucleosynthesis to cosmochronometer. Recently, new facilities, able to investigate nuclear decay in hot plasma, have been conceived and their design is in progress. Anyhow, the use of hot plasma in ECR traps intrinsically exhibits limitation due the high level of background and, on the other side, the necessity to push at the limit the ECR technology to get large plasma density and temperature. Here we report about a different approach, involving the design of an ultra-compact Electron Beam Ion Trap (m-EBIT) able to perform nuclear decay studies for high charge-state ions confined in cold plasma. A preliminary design of the trap, assembly and magnetic field characterization is presented.

Article Details
  • Section
  • Oral contributions
References
J. Wesson, D.J. Campbell, Tokamaks, Oxford University Press (2011) ISBN: 978-0199592234
M. Barbagallo, A. Musumarra et al., Phys. Rev. Lett. 117, 152701 (2016)
K. Takahashi, K. Yokoi, Nucl. Phys. A404, 578 (1983)
F. Bosch et al., Phys. Rev. Lett. 77, 5190 (1996)
Yu.A. Litvinov et al., Phys. Rev. Lett. 99, 262501 (2007)
A. Mengoni et al., Publications of the Astronomical Society of Australia 26, 250 (2009)
K. Blasche and B. Franczak, Proc. of the 3rd European Particle Accelerator Conference, Berlin, 9 (1992)
H. Geissel et al., Nucl. Instrum. Methods Phys. Res., Sect. B 70, 286 (1992)
B. Franzke, Nucl. Instrum. Methods Phys. Res., Sect. B 24 –25, 18 (1987)
R.H. Cyburt, B.D. Fields, K.A. Olive, and T.-H. Yeh, Rev. Mod. Phys. 88, 015004 (2016)
D. D’Angelo at al., EPJ Web of Conferences 126, 02008 (2016)
D. Mascali, A. Musumarra, et al., Eur. Phys. J. A53, 145 (2017)
W. Paul, Rev. Mod. Phys. 62, 531 (1990)
J. Dilling et al., Annu. Rev. Nucl. Part. Sci. 68, 45 (2018)
W.M. Itano and D.J. Wineland, Phys. Rev. A 25, 35 (1982)
D.J. Wineland et al., J. Res. Natl. Inst. Stand. Technol. 103, 259 (1998)
D. Lunney et al. (for the ISOLTRAP Coll.), J. Phys. G: Nucl. Part. Phys. 44, 064008 (2017)
M.J.G. Borge and K. Blaum, J. Phys. G: Nucl. Part. Phys. 45, 010301 (2018)
F. Currell and G. Fussmann, IEEE Trans. On Plasma Science 33(6), 1763 (2005)
D. Schneider, Phys. Scr. 1995(T59), 189 (1995)
P. Micke et al., Review of Scientific Instruments 89, 063109 (2018)
J. Xiao et al., Review of Scientific Instruments 83, 013303 (2012)
D.C. Meeker, Finite Element Method Magnetics, https://www.femm.info/
MathWorks (2020). MATLAB (R2020a). The MathWorks, Inc. Natick, Massachusetts, USA https://www.mathworks.com/
Kimball Physics Inc. New Hampshire, USA https://www.kimballphysics.com/
M. Giarrusso et al., Journal of Plasma Physics, 86(5), 845860502(2020)
M. Giarrusso, Laboratory Astrophysics: From Observations to Interpretation, April 2019 in Cambridge, UK. Edited by F. Salama and H. Linnartz. Proceedings of the International Astronomical Union, 350, 326 (2020)