Microscopic analysis of octupole shape phase transitions and critical points in neutron rich actinides


HNPS Advances in Nuclear Physics vol. 29 (HNPS2022)
Published: May 5, 2023
Keywords:
Relativistic density functionals quadrupole-octupole collective Hamiltonian octupole shapes phase transitions
Vaia Prassa
Abstract

Octupole constrained energy surfaces, and spectroscopic observables of four isotopic chains of: Cm, Cf, Fm and No with neutron numbers 186 N200 are analysed using a collective quadrupole - octupole Hamiltonian (QOCH). The parameters of the Hamiltonian are determined by axially reflection-asymmetric relativistic Hartree-Bogoliubov calculations based on the energy density functional DD-PC1, and a finite-range pairing interaction. The theoretical results suggest quantum phase transitions from non-octupole to octupole deformed shapes and to octupole vibrations with increasing neutron number.  288Cm is possibly close to the critical point of a simultaneous  phase transition from spherical to prolate deformed and from non-octupole to stable octupole deformed configurations.

Article Details
  • Section
  • Oral contributions
References
P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996)
I. Ahmad and P. A. Butler, Annu. Rev. Nucl. Part. Sci. 43, 71 (1993)
P. A. Butler and L. Willmann, Nucl. Phys. News 25, 12 (2015)
P. A. Butler, J. Phys. G: Nucl. Part. Phys. 43, 073002 (2016)
P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155 (2010)
J. Engel and F. Iachello, Nucl. Phys. A 472, 61 (1987)
N. V. Zamfir and D. Kusnezov, Phys. Rev. C 67, 014305 (2003)
K. Nomura, Phys. Rev. C 105, 054318 (2022)
D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, and P. Yotov, Phys. Rev. C 71, 064309 (2005)
D. Lenis and D. Bonatsos, Phys. Lett. B 633, 474 (2006)
R. V. Jolos, P. von Brentano, and J. Jolie, Phys. Rev. C 86, 024319 (2012)
N. Minkov, S. Drenska,M. Strecker,W. Scheid, and H. Lenske, Phys. Rev. C 85, 034306 (2012)
P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C 88, 011305(R) (2013)
D. Bonatsos, A. Martinou, N. Minkov, et al., Phys. Rev. C 91, 054315 (2015)
R. Budaca, P. Buganu, and A. I. Budaca Phys. Rev. C 106, 014311 (2022)
F. Iachello and A. D. Jackson, Phys. Lett. B 108, 151 (1982)
H. J. Daley and F. Iachello, Ann. Phys. (NY) 167, 73 (1986)
T. M. Shneidman, G. G. Adamian, N. V. Antonenko, et al., Phys. Rev. C 67, 014313 (2003)
R. Rodriguez-Guzman, L. M. Robledo, and P. Sarriguren, Phys. Rev. C 86, 034336 (2012)
L. M. Robledo and P. A. Butler, Phys. Rev. C 88, 051302(R) (2013)
Z.P. Li, B.Y. Song, J.M. Yao, D. Vretenar, J. Meng, Phys. Lett. B 726, 866869 (2013)
S. E. Agbemava, A. V. Afanasjev, and P. Ring, Phys. Rev. C 93, 044304 (2016)
S. Y. Xia, H. Tao, Y. Lu, Z. P. Li, Niksic, and D. Vretenar, Phys. Rev. C 96, 054303 (2017)[24] S. E. Agbemava and A. V. Afanasjev, Phys. Rev. C 96, 024301 (2017)
Z. Xu and Z.-P. Li, Chin. Phys. C 41, 124107 (2017)
Y. Cao, S. E. Agbemava, A. V. Afanasjev, et al. Phys. Rev. C 102, 024311 (2020)
J. Erler, K. Langanke, H. P. Loens, et al., Phys. Rev. C 85, 025802 (2012)
P. Moller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)
T. Niksic, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008)
Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009)
Z. P. Li, T. Niksic, and D. Vretenar, J. Phys. G 43, 024005 (2016)
K. Nomura, T. Niksic, and D. Vretenar, Phys. Rev. C 96, 014304 (2017)
V. Prassa, T. Niksic, G. A. Lalazissis, and D. Vretenar, Phys. Rev. C 86, 024317 (2012)
V. Prassa, T. Niksic, and D. Vretenar, Phys. Rev. C 88, 044324 (2013)
V. Prassa, K.E. Karakatsanis, Int. J. Mod. Phys. E 30(07), 2150054 (2021)
Z. P. Li, T. Niksic, and D. Vretenar, J. Phys. G: Nucl. Part. Phys. 43, 024005 (2016)
D. R. Inglis, Phys. Rev. 103, 1786 (1956)
S. T. Belyaev, Nucl. Phys. 24, 322 (1961)
M. Girod and B. Grammaticos, Nucl. Phys. A 330, 40 (1979)
R.Budaca, A.I.Budaca, Phys. Lett. B 759, 349-353 (2016)
V. Prassa, European Physical Journal A 58(9), 183 (2022)