The neutrino floor: a data-driven analysis


HNPS Advances in Nuclear Physics vol. 29 (HNPS2022)
Published: May 5, 2023
Keywords:
neutrino floor Coherent Elastic Neutrino-Nucleus Scattering WIMP-nucleus scattering
Dimitrios K. Papoulias
Abstract

We reconsider the discovery limit of multi-ton direct detection dark matter experiments in the light of recent measurements of the coherent elastic neutrino-nucleus scattering process. Assuming the cross section to be a parameter entirely determined by data, rather than using its Standard Model prediction, we use the COHERENT CsI and LAr data sets to determine WIMP discovery limits. Being based on a data-driven approach, the results are thus free from theoretical assumptions and fall within the WIMP mass regions where XENONnT and DARWIN have best expected sensitivities. We further determine the impact of subleading nuclear form factor and weak mixing angle uncertainties effects on WIMP discovery limits. We point out that these effects, albeit small, should be taken into account. Moreover, to quantify the impact of new physics effects in the neutrino background, we revisit WIMP discovery limits assuming light vector and scalar mediators as well as neutrino magnetic moments/transitions. We stress that the presence of new interactions in the neutrino sector, in general, tend to worsen the WIMP discovery limit.

Article Details
  • Section
  • Oral contributions
References
L. Baudis, Phys. Dark Univ. 1, 94 (2012)
LUX Collaboration, D. S. Akerib et al., Phys. Rev. Lett. 116, 161301 (2016)
PandaX-II Collaboration, X. Cui et al., Phys. Rev. Lett. 119, 181302 (2017)
XENON Collaboration, E. Aprile et al., Phys. Rev. Lett. 123, 251801 (2019)
DarkSide Collaboration, P. Agnes et al., Phys. Rev. D 98, 102006 (2018)
DEAP Collaboration, R. Ajaj et al., Phys. Rev. D 100 no. 2, 022004 (2019)
LUX-ZEPLIN Collaboration, D. S. Akerib et al., arXiv:1802.06039 [astro-ph.IM]
XENON Collaboration, E. Aprile et al., JCAP 1604, 027 (2016)
DARWIN Collaboration, J. Aalbers et al., JCAP 1611, 017 (2016)
XENON Collaboration, E. Aprile et al., JCAP 11, 031 (2020)
L. E. Strigari, New J. Phys. 11, 105011 (2009)
J. Billard, L. Strigari, and E. Figueroa-Feliciano, Phys. Rev. D89, 023524 (2014)
M. Abdullah, et al., e-Print:2203.07361 [hep-ph]
J. B. Dent, B. Dutta, J. L. Newstead, and L. E. Strigari, Phys. Rev. D93, 075018, (2016)
F. Ruppin, J. Billard, E. Figueroa-Feliciano, and L. Strigari, Phys. Rev. D90, 083510, (2014)
S. E. Vahsen, C. A. J. O’Hare, and D. Loomba, Ann. Rev. Nucl. Part. Sci. 71, 189 (2021)
J. H. Davis, “Dark Matter vs. Neutrinos: JCAP 1503, 012 (2015)
C. A. O’Hare, Phys. Rev. D94, 063527 (2016)
D. Aristizabal Sierra, J. Liao, and D. Marfatia JHEP 06, 141 (2019)
D. K. Papoulias, T. S. Kosmas, R. Sahu, V. K. B. Kota, and M. Hota Phys. Lett. B 800, 135133 (2020)
M. Hoferichter, J. Menéndez, and A. Schwenk, Phys. Rev. D 102 , 074018 (2020)
COHERENT Collaboration, D. Akimov et al., Science 357, 1123 (2017)
COHERENT Collaboration, D. Akimov et al., arXiv:1804.09459 [nucl-ex]
COHERENT Collaboration, D. Akimov et al., Phys. Rev. Lett. 126, 012002 (2021)
B. Dutta, S. Liao, L. E. Strigari, and J. W. Walker, Phys. Lett. B773, 242 (2017), arXiv:1705.00661 [hep-ph]
E. Bertuzzo, F. F. Deppisch, S. Kulkarni et al., JHEP 04, 073 (2017)
D. Aristizabal Sierra, N. Rojas, and M. H. G. Tytgat, JHEP 03, 197 (2018)
C. Boehm, D. G. Cerdeño, P. A. N. Machado et al., JCAP 01, 043 (2019)
R. Essig, M. Sholapurkar, and T.-T. Yu, Phys. Rev. D 97, 095029 (2018)
P. B. Denton, Y. Farzan, and I. M. Shoemaker, JHEP 07, 037 (2018)
D. Aristizabal Sierra, B. Dutta, S. Liao, and L. E. Strigari, JHEP 12, 124 (2019)
D. Aristizabal Sierra, V. De Romeri, L.J. Flores, D.K. Papoulias. E. Strigari, JCAP 01, 055 (2022)