The role of temperature on the tidal deformability of an inspiraling binary neutron star system

HNPS Advances in Nuclear Physics vol. 29 (HNPS2022)
Published: May 5, 2023
equation of state neutron stars tidal deformability temperature binary neutron start system
Alkiviadis Kanakis-Pegios

The detection of gravitational waves emitted by binary neutron star mergers consists a very promising tool for studying the properties of dense nuclear matter. The lack of exact evidence for a zero-temperature scenario regarding the inspiral phase of a coalescing binary neutron star system raises the question of the role of temperature. Based on some theoretical studies, the existence of temperature (about a few MeV) before the merger is possible. The main goal of our work is to study the thermal effects on the tidal deformability of neutron stars, by taking into consideration the observations of binary neutron star mergers. In our study, we used various hot equations of state, both isothermal and adiabatic, and for different nuclear models. The main finding is that for temperature below 1 MeV the tidal deformability as a function of the neutron star mass remains insensible. In the adiabatic case, this behavior is present up to entropy per baryon S=0.2 kB.

Article Details
  • Section
  • Oral contributions
B. P. Abbott et al., Phys. Rev. X 9, 011001 (2019)
B. P. Abbott et al., Astrophys. J. Lett. 892, L3 (2020)
A. Kanakis-Pegios, P.S. Koliogiannis, and Ch.C. Moustakidis, Phys. Lett. B 832, 137267 (2022)
D. Radice, S. Bernuzzi, and A. Perego, Annu. Rev. Nucl. Part. Sci. 70, 95–119 (2020)
L. Baiotti, Progr. Part. Nucl. Phys. 109, 103714 (2019)
K. Chatziioannou, Gen. Relativ. Gravit. 52, 109 (2020)
N. Sarin and P.D. Lasky, Gen. Relativ. Gravit. 53, 59 (2021)
T. Dietrich, T. Hinderer, and A. Samajdar, Gen. Relativ. Gravit. 53, 27 (2021)
A. Kanakis-Pegios, P.S. Koliogiannis, and Ch.C. Moustakidis, Phys. Rev. C 102, 055801 (2020)
A. Kanakis-Pegios, P.S. Koliogiannis, and Ch.C. Moustakidis, Symmetry 13, 183 (2021)
P.S. Koliogiannis, A. Kanakis-Pegios, and Ch.C. Moustakidis, Foundations 1(2), 217-255 (2021)
P. Meszaros and M.J. Rees, Astrophys. J. 397, 570 (1992)
L. Bildsten and C. Cutler, Astrophys. J. 400, 175 (1992)
C.S. Kochanek, Astrophys. J. 398, 234 (1992)
E. R. Most et al., MNRAS 509, 1096 (2022)
A. Perego, S. Bernuzzi, and D. Radice, Europ. Phys. Journ. A 55, 124 (2019)
P. Arras and N.N. Weinberg, MNRAS 486, 1424 (2019)
D. Lai, MNRAS 270, 611 (1994)
A. Reisenegger and P. Goldreich, Astrophys. J. 426, 688 (1994)
W.C.G. Ho and D. Lai, MNRAS 308, 153 (1999)
Z. Pan et al., Phys. Rev. Lett. 125, 201102 (2020)
M.V. Beznogov, A.Y. Potekhin, and D.G. Yakovlev, Phys Rep. 919, 1-68 (2021)
J.M. Lattimer and F.D. Swesty, Nucl. Phys. A 535, 331 (1991)
G. Shen, C. J. Horowitz, and S. Teige, Phys. Rev. C 83 (2011)
S. Banik, M. Hempel, and D. Bandyopadhyay, Astrophys. J. Suppl. Ser. 214, 22 (2014)
A.W. Steiner, M. Hempel, and T. Fischer, Astrophys. J. 774, 17 (2013)
P.S. Koliogiannis and Ch.C. Moustakidis, Astrophys. J. 912, 69 (2021)
J.M. Lattimer and M. Prakash, Phys. Rep. 621, 127-164 (2016)
M.Prakash et al., Phys. Rep. 280, 1-77 (1997)
Ch.C. Moustakidis and C.P. Panos, Phys. Rev. C 79, 045806 (2009)
J.B. Wei et al., Phys. Rev. C 104, 065806 (2021)
S. Typel, J. Phys. G: Nucl. Part. Phys. 45, 114001 (2018)
S. Typel et al., Phys. Rev. C 81, 015803 (2010)
T. Carreau et al., A&A 635, A84 (2020)
A. Akmal, V.R. Pandharipande, and D.G. Ravenhall, Phys. Rev. C 82, 1804 (1998)
S. Postnikov, M. Prakash, and J.M. Lattimer, Phys. Rev. D 82, 024016 (2010)
E.E. Flanagan and T. Hinderer, Phys. Rev. D 77 (2008)
T. Hinderer, Astrophys. J. 677, 1216 (2008)
T. Hinderer et al., Phys.Rev. D 81, 123016 (2010)
P.S. Koliogiannis and Ch.C. Moustakidis, Phys. Rev. C 101, 015805 (2020)