The Effects of Dark Matter upon Neutron Stars’ Properties


HNPS Advances in Nuclear Physics vol. 29 (HNPS2022)
Published: May 5, 2023
Keywords:
Neutron Stars Dark Matter Dark Particle Tidal Polarizability Equation of State Two Fluid Dark Matter Halo
Michael Vikiaris
Abstract

The nature of Dark Matter remains elusive despite all of our efforts. This missing matter of the universe cannot be directly observed, but we can see its gravitational effects. Galaxies and Clusters of Galaxies are most likely to contain Dark Matter that is trapped to their Gravitational Field. This leads us to the natural conclusion that Compact Objects might contain Dark Matter too. Neutron Stars are the natural laboratories that we can test our theories and receive crucial observational data. Thus, many models of Dark Matter have been produced to check the existence of Dark Matter in those stars. Since we know for sure the varying parameters of Neutron Stars (Radii, Mass, Λ etc.), by inserting Dark Matter to our equations we can see the differences we obtain in the aforementioned parameters. In this study, we chose to work with the Dark Matter Halo model, where a Neutron Star’s gravitational field is able to trap Dark Matter, but the latter expands way beyond the star’s radius, creating a Dark Halo around the Neutron Star. By studying the various parameters of the Star, we can obtain crucial information about the whole structure and the nature of Dark Matter. 

Article Details
  • Section
  • Poster contributions
References
N. K. Glendenning, Compact Stars—Nuclear Physics, Particle Physics and General Relativity, Springer, New York (1997)
P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1: Equation of State and Structure, Springer-Verlag, New York (2007)
B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)
B. P. Abbott et al., Phys. Rev. Lett. 121, 161101 (2018)
B. P. Abbott et al., Phys. Rev. X 9, 011001 (2019)
Snowmass 2013 Cosmic Frontier Working Groups 1–4 collaboration, Dark matter in the coming decade: complementary paths to discovery and beyond, Phys. Dark Univ. 7-8, 16 (2015)
D.N. Spergel and P.J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000)
A. Loeb and N. Weiner, Phys. Rev. Lett. 106, 171302 (2011)
D.E. Kaplan, M.A. Luty and K.M. Zurek, Phys. Rev. D 79, 115016 (2009)
S.M. Boucenna and S. Morisi, Front. Phys. 1, 33 (2014)
K.M. Zurek, Phys. Rep. 537, 91 (2014)
C. Kouvaris and P. Tinyakov, Phys. Rev. D 82, 063531 (2010)
S.C. Leung, M.C. Chu and L.M. Lin, Phys. Rev. D 84, 107301 (2011)
C. Kouvaris and N.G. Nielsen, Phys. Rev. D 92, 063526 (2015)
B. Bertoni, A.E. Nelson and S. Reddy, Phys. Rev. D 88, 123505 (2013)
I. Goldman and S. Nussinov, Phys. Rev. D 40, 3221 (1989)
A. E. Nelson, S. Reddy, and D. Zhou, J. Cosmol. Astropart. Phys. 07, 12 (2019)
J. Ellis, A. Hektor, G. Hütsi, et al., Phys. Lett. B 781, 607 (2018)
N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009)
J. F. Navarro, “The structure of cold dark matter halos”, in Symposium-international astronomical union, Cambridge University Press, vol. 171, pp. 255–258 (1996)
Sandin and P. Ciarcelluti, Astropart. Phys. 32, 278 (2009)
R. Ciancarella et al., Phys. Dark Universe 32, 100796 (2021)
G. Panotopoulos and I. Lopes, Phys. Rev. D 96, 083004 (2017)
J. Ellis et al., Phys. Rev. D 97, 123007 (2018)
H. C. Das, A. Kumar, B. Kumar, et al., Mon. Notices Royal Astron. Soc. 495, 4893 (2020)
C. Kouvaris and P. Tinyakov, Phys. Rev. D 82, 063531 (2010)
L.S. Ahn S et al., Phys. Rev. Lett. 124, 101802 (2020)
O. Kwon et al., Phys. Rev. Lett. 126, 191802 (2021)
K.Y. Andrew et al., Phys. Rev. Lett. 130, 071002 (2023)
J. Lattimer and M. Prakash, Astrophys. J. 550, 426 (2001)