Impact of nuclear mass measurements in the vicinity of 132Sn on the r-process nucleosynthesis
Published:
Oct 17, 2022
Keywords:
r-process Penning traps Hauser-Feshbach neutron-capture rates
Abstract
Nuclear masses are a key aspect in the modelling of nuclear reaction rates for the r-process nucleosynthesis. High precision mass measurements drastically reduce the associated uncertainties in the modelling of r-process nucleosynthesis. We investigate the impact of nuclear mass uncertainties on neutron-capture rates calculations using a Hauser – Feshbach statistical code in the vicinity of 132Sn. Finally, we study the impact of the propagated neutron-capture reaction rates uncertainties on the r-process nucleosynthesis. We find that mass measurements with uncertainties higher than 20 keV affect the calculation of reaction rates. We also note that modelling of reaction rates can differ for more than a factor of two even for experimentally known nuclear masses.
Article Details
- How to Cite
-
NIKAS, S., Kankainen, A., Beliuskina, O., & Nesterenko, D. (2022). Impact of nuclear mass measurements in the vicinity of 132Sn on the r-process nucleosynthesis. HNPS Advances in Nuclear Physics, 28, 86–92. https://doi.org/10.12681/hnps.3605
- Issue
- Vol. 28 (2021): HNPS2021
- Section
- Oral contributions
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, “Synthesis of the Elements in Stars,” Rev. Mod. Phys., vol. 29, no. 4, pp. 547–650, Oct. 1957, doi: 10.1103/RevModPhys.29.547.
J. J. Cowan et al., “Making the heaviest elements in the Universe: a review of the rapid neutron capture process,” arXiv preprint arXiv:1901.01410, 2019.
J. J. Cowan and C. Sneden, “Heavy element synthesis in the oldest stars and the early Universe,” Nature, vol. 440, no. 7088, pp. 1151–1156, 2006.
S. Nikas, G. Mart’inez-Pinedo, M. R. Wu, A. Sieverding, and M. P. Reiter, “Exploring the astrophysical conditions for the creation of the first r-process peak, and the impact of nuclear physics uncertainties,” HNPS Advances in Nuclear Physics, vol. 27, pp. 175–179, 2020.
M. R. Mumpower, G. C. McLaughlin, and R. Surman, “Influence of neutron capture rates in the rare earth region on the r-process abundance pattern,” Phys. Rev. C, vol. 86, no. 3, p. 35803, Sep. 2012, doi: 10.1103/PhysRevC.86.035803.
A. Aprahamian, I. Bentley, M. Mumpower, and R. Surman, “Sensitivity studies for the main r process: nuclear masses,” AIP Advances, vol. 4, no. 4, p. 41101, 2014.
M. R. Mumpower, R. Surman, G. C. McLaughlin, and A. Aprahamian, “The impact of individual nuclear properties on r-process nucleosynthesis,” Progress in Particle and Nuclear Physics, vol. 86, pp. 86–126, 2016.
C. Sneden and J. J. Cowan, “Genesis of the heaviest elements in the Milky Way Galaxy,” Science, vol. 299, no. 5603, pp. 70–75, 2003.
D. Kasen, B. Metzger, J. Barnes, E. Quataert, and E. Ramirez-Ruiz, “Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event,” Nature, vol. 551, no. 7678, pp. 80–84, 2017, doi: 10.1038/nature24453.
C. Freiburghaus, S. Rosswog, and F.-K. Thielemann, “r-Process in Neutron Star Mergers,” Astrophys. J., vol. 525, no. 2, pp. L121–L124, Nov. 1999, doi: 10.1086/312343.
D. Radice, F. Galeazzi, J. Lippuner, L. F. Roberts, C. D. Ott, and L. Rezzolla, “Dynamical mass ejection from binary neutron star mergers,” Monthly Notices of the Royal Astronomical Society, vol. 460, no. 3, pp. 3255–3271, 2016.
S. Goriely, A. Bauswein, and H.-T. Janka, “R-process nucleosynthesis in dynamically ejected matter of neutron star mergers,” The Astrophysical Journal Letters, vol. 738, no. 2, p. L32, 2011.
M. Eichler et al., “The Role of Fission in Neutron Star Mergers and Its Impact on the r-Process Peaks,” vol. 808, p. 30, Jul. 2015, doi: 10.1088/0004-637X/808/1/30.
M.-R. Wu, R. Fernández, G. Mart’inez-Pinedo, and B. D. Metzger, “Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers,” Monthly Notices of the Royal Astronomical Society, vol. 463, no. 3, pp. 2323–2334, 2016.
M. R. Mumpower, G. C. Mclaughlin, R. Surman, and A. W. Steiner, “Reverse engineering nuclear properties from rare earth abundances in the r process,” Journal of Physics G: Nuclear and Particle Physics J. Phys. G: Nucl. Part. Phys, vol. 44, p. 30, 2017, doi: 10.1088/1361-6471/44/3/034003.
S. Goriely, “Uncertainties in the solar system r-abundance distribution,” A&A, vol. 342, pp. 881–891, 1999.
M. R. Mumpower, R. Surman, and A. Aprahamian, “The impact of global nuclear mass model uncertainties on r -process abundance predictions,” EPJ Web Conf., 2014.
S. Nikas, “Evaluation of the Sensitivity of Neutron Capture Rates to the Modeling of Statistical Nuclear Properties, and Impact to Nucleosynthesis,” 2017.
S. Nikas, G. Perdikakis, M. Beard, R. Surman, M. R. Mumpower, and P. Tsintari, “Propagation of Hauser-Feshbach uncertainty estimates to r-process nucleosynthesis: Benchmark of statistical property models for neutron rich nuclei far from stability,” arXiv preprint arXiv:2010.01698, 2020.
M. P. Reiter et al., “Mass Measurements of Neutron-Rich Gallium Isotopes Refine Production of Nuclei of the First r-Process Abundance Peak During GW170817,” arXiv preprint arXiv:1810.11561, 2018.
S. Eliseev et al., “Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides,” Physical Review Letters, vol. 110, no. 8, p. 082501, Feb. 2013, doi: 10.1103/PHYSREVLETT.110.082501/FIGURES/5/MEDIUM.
T. Dickel et al., “Recent upgrades of the multiple-reflection time-of-flight mass spectrometer at TITAN, TRIUMF,” Hyperfine Interactions 2019 240:1, vol. 240, no. 1, pp. 1–9, Jun. 2019, doi: 10.1007/S10751-019-1610-Y.
M. Vilen et al., “Improving r-process calculations for the rare-earth abundance peak via mass measurements at JYFLTRAP,” eprint arXiv:1801.08940, pp. 1–8, 2018, [Online]. Available: http://arxiv.org/abs/1801.08940
M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, “The AME2016 atomic mass evaluation (II). Tables, graphs and references,” Chinese Physics C, vol. 41, no. 3, p. 30003, 2017.
M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, “The AME 2020 atomic mass evaluation (II). Tables, graphs and references,” Chinese Physics C, vol. 45, no. 3, p. 30003, 2021.
A. Kankainen, T. Eronen, D. Nesterenko, A. de Roubin, and M. Vilén, “Recent experiments at the JYFLTRAP Penning trap,” Hyperfine Interactions 2020 241:1, vol. 241, no. 1, pp. 1–14, Mar. 2020, doi: 10.1007/S10751-020-01711-5.
A. J. Koning and D. Rochman, “Modern nuclear data evaluation with the TALYS code system,” Nuclear data sheets, vol. 113, no. 12, pp. 2841–2934, 2012.