| More

The HVT Technique and the "Uncertainty" Relation for Central

Views: 61 Downloads: 26
M. Grypeos, C. G. Koutroulos, K. J. Oyewumi, Th. Petridou
M. Grypeos, C. G. Koutroulos, K. J. Oyewumi, Th. Petridou

Abstract


The quantum mechanical hypervirial theorems (HVT) technique is used to treat the so-called "uncertainty" relation for quite a wide class of central potential wells, including the (reduced) Poeschl-Teller and the Gaussian one.
It is shown that this technique is quite suitable in deriving an approximate analytic expression in the form of a truncated power series expansion for the dimensionless product $P_{nl}\equiv <r^2>_{nl}<p^2>_{nl}/\hbar^2$, for every (deeply) bound state of a particle moving non-relativistically in the well, provided that a (dimensionless) parameter s is sufficiently small. Numerical results are also given and discussed.


Full Text:

PDF

References


J.O. Hirschfelder, Chem. Phys. 33 1462 (1960), S.M. McRae and E.R. Vrscay, J. Math. Phys. 33 3004 (1992), F.M. Fernandez and D.A. Castro, Hypervirial Theorems (Lecture Notes in Chemistry vol 43) (Berlin: Springer)

J. Killingbeck, Phys. Lett. A65, 87 (1978), J. Killingbeck, Microcomputer Quantum Mechanics, 1983 (Bristol, Hilger) ch 9 and references therein

M. Grant and C.S. Lai, Phys. Rev. A20, 718 (1979), C.S. Lai, Phys. Rev. A23, 445 (1981), C.S. Lai and Lin, J. Phys. A Math. Gen. 24, 5291 (1991)

Th.E. Liolios and M.E. Grypeos, International Journal of Theoretical Physics 2051 (1997), Th.E. Liolios Computer Physics Communications 105,254 (1997), Th. E. Liolios, Ph. D. thesis, University of Thessaloniki (1997)

M.E. Grypeos and Th. Liolios, Phys. Let. A252, 125 (1999))

R.J. Swenson and S.H. Danforth, J. Chem. Phys. 57 (1972)

R.P. Feynmann, Phys. Rev. 56, 340 (1930) H. Hellmann, Einfuhrung in die Quantenchemie, Deuticko, Vienna (1937)

M.E. Grypeos, C.G. Koutroulos, Th.A. Petridou, J. Phys. A: Math. Gen. 35, 2233 (2002)

R.G. Lombard, S. Marcos and J. Mares, Phys. Rev. C50, 2900 (1994)

W. Thirring, A course in Mathematical Physics 3. Quantum Mechanics of Atoms and Molecules (Springer, New York) (1979)

R.A. Bertlmann and A. Martin, Nucl. Phys. B168, 111 (1980)

W. Heisenberg, Z. Phys. 43, 172 (1927)

M.J.W. Hall, Phys. Rev. A64 052103 and references therein

a) V.V. Dodonov, V.I. Man'ko, Generalization of the Uncertainty relations in Quantum Mechanics, Proceedings of the Lebedev Science Institute, Vol. 183, Nova Science Publ., N.Y. 1989, b) M.M. Nieto, Phys. Rev. A20, 700 (1979)

J. Killingbeck, J. Phys. A Math. Gen. 14, 1005 (1981), J. Killingbeck, J. Phys. A Math. Gen. 20, 601 (1987)

M.R.M. Witwit, J. Phys. A, Math. Gen. 24, 3041 (1991), M.R.M. Witwit, J. Phys. A, Math. Gen. 24, 3053 (1991), M.R.M. Witwit, J. Phys. A, Math. Gen. 24, 4535 (1991)

J. Killingbeck, G. Jolicard, Chem. Phys. Lett. 284, 359 (1998), J. Killingbeck, A. Grosjean, J.M. Zucconi, Phys. Lett. A261 169 (1999)

Th.E. Liolios, Eur. Phys. J. A4 329 (1999)

M.E. Grypeos, C.G. Koutroulos, Th.A. Petridou, Int.J. Mod. Phys. E10, 393 (2001)

M.E. Grypeos, C.G. Koutroulos, K.J. Oyewumi, Th. Petridou, submitted for publication.




DOI: http://dx.doi.org/10.12681/hnps.3351

Refbacks

  • There are currently no refbacks.




Copyright (c) 2021 M. Grypeos, C. G. Koutroulos, K. J. Oyewumi, Th. Petridou

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.