Microscopic description of induced fission dynamics with nuclear energy density functionals


Published: Apr 17, 2020
Keywords:
nuclear physics induced fission nuclear theory collective models
Vaia Prassa
H Tao
J. Zhao
Z. P. Li
T. Nikšić
D. Vretenar
Abstract
Static and dynamic aspects of the fission process are analyzed in a self-consistent framework based on energy density functionals. Multidimensionally constrained mean-field calculations in the collective space determine the potential energy surface of the fissioning nucleus, the scission line, the single-nucleon wave functions, energies, and occupation probabilities. Induced fission dynamics is described using the time-dependent generator coordinate method in the Gaussian overlap approximation. The position of the scission line is analyzed as a function of the strength of the pairing interaction, as well as the effect of static pairing correlations on charge yields and total kinetic energy of fission fragments.
Article Details
  • Section
  • Oral contributions
References
Jie Zhao et al., Phys. Rev. C 99 014618 (2019), doi: 10.1103/PhysRevC.99.014618
N. Schunck and L. M. Robledo, Rep. Prog. Phys. 79, 116301 (2016), doi: 10.1088/0034-4885/79/11/116301
Hans J. Krappe and K. Pomorski, Theory of Nuclear Fission (Springer-Verlag, Berlin, 2012).
G. Scamps, C. Simenel, and D. Lacroix, Phys. Rev. C 92, 011602(R) (2015), doi: 10.1103/PhysRevC.92.011602
C. Simenel and A.S. Umar, Phys. Rev. C 89, 031601(R) (2014), doi: 10.1103/PhysRevC.89.031601
P. Goddard, P. Stevenson, and A. Rios, Phys. Rev. C 92, 054610 (2015), 10.1103/PhysRevC.92.054610
B. Avez, C. Simenel, and P. Chomaz, Phys. Rev. C 78, 044318 (2008), 10.1103/PhysRevC.78.044318
A. Bulgac et al., Phys. Rev. Lett. 116, 122504 (2016), doi: 10.1103/PhysRevLett.116.122504
P. Goddard, P. Stevenson, and A. Rios, Phys. Rev. C 93, 014620 (2016), doi: 10.1103/PhysRevC.93.014620
Y. Tanimura, D. Lacroix, and S. Ayik, Phys. Rev. Lett. 118, 152501 (2017), doi: 10.1103/PhysRevLett.118.152501
T. Nakatsukasa et al., Rev. Mod. Phys. 88, 045004 (2016), doi: 10.1103/RevModPhys.88.045004
S. A. Giuliani, L.M. Robledo, and R. Rodriguez-Guzman, Phys. Rev. C 90, 054311 (2014), doi: 10.1103/PhysRevC.90.054311
C. R. Chinn et al., Phys. Rev. C 45, 1700 (1992), doi: 10.1103/PhysRevC.45.1700
A. Staszczak, A. Baran, and W. Nazarewicz, Phys. Rev. C 87, 024320 (2013), doi: 10.1103/PhysRevC87.024320
M. Warda and J. L. Egido, Phys. Rev. C 86, 014322 (2012), doi: 10.1103/PhysRevC.86.014322
J. W. Negele, Rev. Mod. Phys. 54, 913 (1982), doi: 10.1103/RevModPhys.54.913
J. Sadhukhan et al., Phys. Rev. C 88, 064314 (2013), doi: 10.1103/ PhysRevC.88.064314
J. Sadhukhan et al., Phys. Rev. C 90, 061304 (2014). doi: 10.1103/ PhysRevC.90.061304
R. Smolanczuk, J. Skalski, and A. Sobiczewski, Phys. Rev. C 52, 1871 (1995), doi: doi: 10.1103/ PhysRevC.52.1871
J. F. Berger, M. Girod, and D. Gogny, Comp. Phys. Comm. 63, 365 (1991), doi: 10.1016/0010-4655(91)90263-K
H. Goutte, J. F. Berger, P. Casoli, and D. Gogny, Phys. Rev. C 71, 024316 (2005), doi: 10.1103/PhysRevC.71.024316
W. Younes and D. Gogny, Lawrence Livermore National Laboratory Report No. LLNL-TR-586678, 2012 (unpublished).
D. Regnier et al., Comp. Phys. Comm. 200, 350 (2016), doi: 10.1016/j.cpc.2015.11.013
D. Regnier et al., Phys. Rev. C 93, 054611 (2016), doi: 10.1103/PhysRevC.93.054611
A. Zdeb, A. Dobrowolski, and M. Warda, Phys. Rev. C 95, 054608 (2017), doi: 10.1103/PhysRevC.95.054608
K.-H. Schmidt, et al., Nucl. Phys. A 665, 221 (2000), doi: 10.1016/S0375-9474(99)00384-X
P. W. Zhao et al., Phys. Rev. C 82, 054319 (2010), doi: 10.1103/PhysRevC.82.054319
M. Bender et al., Eur. Phys. J. A 8, 59 (2000), doi: 10.1007/s10050-000-4504-z
N. Dubray, H. Goutte, and J.-P. Delaroche, Phys. Rev. C 77, 014310 (2008), doi: 10.1103/PhysRevC.77.014310
W. Younes and D. Gogny, Phys. Rev. C 80, 054313 (2009), doi: 10.1103/PhysRevC.054313
S. Pommé et al., Nucl. Phys. A 572, 237 (1994), doi: 10.1016/0375-9474(94)90174-0
N. Schunck, D. Duke, H. Carr, and A. Knoll, Phys. Rev. C 90, 054305 (2014), doi: 10.1103/PhysRevC.90.054305