Cross section calculations for neutrino-nucleus reactions at low and intermediate energies.


V. Ch. Chasioti
T. S. Kosmas
P. Divari
Abstract

Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino (or antineutrino). Contributions coming from both, the vector and axial-vector components of the corresponding hadronic currents have been included. The initial and final state nuclear wave-functions have been calculated in the context of the Quasi-particle Random Phase Approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum (up to about 5 MeV) of the studied nuclei. The results presented here refer to the nuclear isotopes 16O and 98Mo. As it is well known, O plays a significant role in supernova evolution phenomena and Mo is used as a target in the MOON neutrino experiment at Japan.

Article Details
  • Section
  • Oral contributions
References
T.W. Donnelly and R.D. Peccei, Phys. Rep. 50 (1979) 1 .
R. Davis, Prog. Part. Nucl. Phys. 32 (1994) 13.
E. Kolbe and T.S. Kosmas, Springer Trac. Mod. Phys. 163 (2000) 199 and References therein.
W. C. Haxton, Phys. Rev. Lett. 60, 768, (1988).
J. N. Bahcall and R. K. Ulrich, Rev. Mod. Phys. 60 (1988) 297; K. Kubodera and S. Nozawa, Int. J. Mod. Phys. E 3 (1994) 101.
J. Rapaport et al., Phys. Rev. Lett. 47 (1981) 1518; 54 (1985) 2325;
D. Krofcheck et al., Phys. Rev. Lett. 55 (1985) 1051; Phys. Lett. B 189 (1987) 299
Yu.S. Lu- tostansky and N.B. Skulgina, Phys. Rev. Lett. 67 (1991) 430.
J.W.F. Valle, E-print: hep-ph/0610247, and references therein.
B. Bodmann et al., KARMEN Collaboration, Phys. Lett. B 267 (1991) 321; B 280 (1992) 198; B 332 (1994) 251.
G. Drexlin et al., Prog. Part. Nucl. Phys. 32 (1994) 375.
T. W. Donnelly and J. D. Walecka, Phys. Lett. B 41 (1972) 275;
T. W. Donnelly, Phys. Lett. B 43 (1973) 93
J. B. Langworthy, B. A. Lamers and H. Uberall, Nucl. Phys. A280 (1977) 351
E. V. Bugaev et al., Nucl. Phys. A 324 (1979) 350.
J. S. Bell and C. H. Llewellyn-Smith, Nucl. Phys. B 28 (1971) 317.
T. K. Gaisser and J. S. O’Connell, Phys. Rev. D 34 (1986) 822
T. Kuramoto, M. Fukugita, Y. Kohyama and K. Kubodera, Nucl. Phys. A 512 (1990) 711.
S. K. Singh and E. Oset, Nucl. Phys. A 542 (1992) 587;
T.S. Kosmas and E. Oset, Phys. Rev. C 53 (1996) 1409.
E. Kolbe, Phys. Rev. C 54 (1996) 1741 .
E. Kolbe and K. Langanke, Phys. Rev. C 63 (2001) 025802
T.W. Donnelly and J.D. Walecka, Nucl. Phys. A 201 (1973) 81 ; ibid Nucl. Phys. A 274 (1976) 368 .
N. Jachowicz et al, Phys. Rev. C 59, 3246 (1999)
N. Jachowicz, K. Heyde, and S. Rombouts, Nucl. Phys. A 688, 593 (2001).
H. Ejiri, J. Engel, N. Kudomi, Phys. Lett. B 530 (2002) 27
R. Hazama et al, Nucl. Phys. B (Proc. Suppl.) 138 (2005) 102.
V.Ch. Chasioti and T.S. Kosmas, Czech. J. Phys. 52 (2002) ; E-print: nucl- th/0202062.
V.Ch. Chasioti, T.S. Kosmas and P.C. Divari, Prog. Part. Nucl. Phys., to appear.
V.Ch. Chasioti, semileptonic processes in nuclei, PhD thesis, in preparation.
T.S. Kosmas, Prog. Part. Nucl. Phys., 2001
K. Langanke, Private communication (2006).
V.Ch. Chasioti, T.S. Kosmas and P.C. Divari, to be submitted.