| More

A Global Model of β−-Decay Half-Lives Using Neural Networks

Views: 32 Downloads: 11
N. Costiris, E. Mavrommatis, K. A. Gernoth, J. W. Clark
N. Costiris, E. Mavrommatis, K. A. Gernoth, J. W. Clark

Abstract


Statistical modeling of nuclear data using artificial neural networks (ANNs) and, more re- cently, support vector machines (SVMs), is providing novel approaches to systematics that are complementary to phenomenological and semi-microscopic theories. We present a global model of β−-decay halflives of the class of nuclei that decay 100% by β− mode in their ground states. A fully-connected multilayered feed forward network has been trained using the Levenberg- Marquardt algorithm, Bayesian regularization, and cross-validation. The halflife estimates gen- erated by the model are discussed and compared with the available experimental data, with previous results obtained with neural networks, and with estimates coming from traditional global nuclear models. Predictions of the new neural-network model are given for nuclei far from stability, with particular attention to those involved in r-process nucleosynthesis. This study demonstrates that in the framework of the β−-decay problem considered here, global models based on ANNs can at least match the predictive performance of the best conventional global models rooted in nuclear theory. Accordingly, such statistical models can provide a valuable tool for further mapping of the nuclidic chart.


Full Text:

PDF

References


Opportunities in Nuclear Science: “A Long Range Plan in the Next Decade”(DOE/NSF, 2002); “Long Range Plan 2004” (NUPECC, 2004).

H. Nakata, T. Tachibana, M. Yamada, Nucl. Phys. A625, 521 (1997).

H. Homma et al., Phys. Rev. C 54, 2972 (1996).

P. Moller, B. Pfeiffer, K.-L. Kratz, Phys. Rev. C 67, 055802 (2003).

I. N. Borzov, S. Goriely, Phys. Rev. C 62 (2000) 035501.

T. Niksic et al., Phys. Rev. C 71 (2005) 014308.

J. W. Clark, in Scientific Applications of Neural Nets, J. W. Clark, T. Lindenau, M. L. Ristig, eds. (Springer, Berlin, 1999), p. 1; K. A. Gernoth, ibid., p. 139.

H. Li, J. W. Clark, E. Mavrommatis, S. Athanassopoulos, K. A. Gernoth, in Condensed Matter Theories, Vol. 20, J. W. Clark, R. M. Panoff, H. Li, eds. (Nova Science Publishers, N.Y. 2006) p. 505, nucl-th/0506080

J. W. Clark, H. Li, in Recent Progress in Many-Body Theories, Vol. 8, S. Hernandez and H. Cataldo, eds. (World Scientific, Singapore, 2006),

nucl-th/0603037.

N. Costiris, E. Mavrommatis, K. A. Gernoth, J. W. Clark, to be published.

E. Mavrommatis, A. Dakos, K. A. Gernoth, J. W. Clark, Condensed Matter Theories, Vol. 13, J. da Providencia, F. B. Malik, eds. (Nova Sciences Publishers, Commack, NY, 1998), p. 423.

J. W. Clark, E. Mavrommatis, S. Athanassopoulos, A. Dakos, K. A. Gernoth”, Fission Dynamics of Atomic Clusters and Nuclei, D. M. Brink, F. F. Karpechine, F. B. Malik, and J. da Providencia, eds. (World Scientific, Singapore), pp. 76-85. [nucl-th/0109081]

H. Demuth, M. Beale, Guide Version 4 (The Mathworks Inc., 2000).

G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra, Nucl. Phys. A729, 3 (2003).

P. Moller, J. R. Nix, K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

B. Pfeiffer, K.-L. Kratz, P. Moller, Institut fur Kernchemie Internal Report (2003).

K. Takahashi, M. Yamada, T. Kondoh, At. Data Nucl. Data Tables 12, 101 (1973).

P. Moller, J. R. Nix, W. D. Myers, W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

G. Audi, A. H. Wapstra, Nucl. Phys. A595, 409 (1995).

P. T. Hosmer et al., Phys. Rev. Lett. 94, 112501 (2005)




DOI: http://dx.doi.org/10.12681/hnps.2640

Refbacks

  • There are currently no refbacks.




Copyright (c) 2019 N. Costiris, E. Mavrommatis, K. A. Gernoth, J. W. Clark

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.