| More

Simulation of a muographic analysis of a volcanic dome in Geant4

Views: 64 Downloads: 30
Constantin D. Athanassas, C. Kitsaki, T. Alexopoulos, V. Gika, S. Maltezos
Constantin D. Athanassas, C. Kitsaki, T. Alexopoulos, V. Gika, S. Maltezos

Abstract


Here we present a Monte Carlo simulation of a muographic campaign on Methana volcano, Greece. In order to estimate the absorption parameters and the pattern of muon scattering at various incident energies (GeV to TeV), a radar-derived digital terrain model (DTM) was submitted to irradiation by horizontal muons in Geant4 and the penetrating muons were collected by a hypothetical MicroMegas particle detector on the other side of the DTM. Monte Carlo simulation demonstrated that muon energies at least as high as 10 TeV are required for whole-scale radiography of Methana and one has to reduce the scale of study to smaller structures (e.g. ~ 600 m - wide volcanic domes) in order to exploit the more affluent lower energy muons (~ 600 GeV).  Coulomb scattering, on the other hand, brings about deflection of muon trajectories away from the detector, resulting in loss of information. Additionally, scattering adds Gaussian blurring to the scanned objects. With the intention of improving contrast and extract objects in muographic image we recommend the use of spatial operators (filters) employed in image analysis.

Keywords


muography; digital terrain model (DTM); detector; lava dome; Methana volcano

Full Text:

PDF

References


G.A. Tselentis et al., Geophysics 73, 89 (2013), doi: 10.1190/1.3560016

S. Procureur, Nucl. Inst Meth. Phys. Res. A 878, 169 (2018), doi: 10.1016/j.nima.2017.08.004

T.K. Gaiser et al. Cambridge University Press, 444p (2016), doi: 10.1017/CBO9781139192194

K. Borozdin et al., Phys. Rev. Lett. 109, 152501 (2012)

Perry et al., J. App. Phys. 113, 184909 (2013), doi: 10.1063/1.4804660

H.K.M. Tanaka et al., Geoph. Res. Lett. 34, L22311 (2007), doi: 10.1029/2007GL031389

H.K.M. Tanaka et al., Nucl. Inst Meth. Phys. Res. A 555, p.164 (2005), doi: 10.1016/j.nima.2005.08.099

H.K.M. Tanaka et al., Nucl. Inst Meth. Phys. Res. A 575, p. 489 (2007), doi: 10.1016/j.nima.2007.02.104

N. Lesparre et al., Geoph. J. Int. 183, 1348 (2010), doi: 10.1111/j.1365-246X.2010.04790.x

C. Cârloganu et al., Geosci. Instrum. Method. Data Syst. 2, 55 (2013), doi: 10.5194/gi-2-55-2013, 2013

N. Lesparre et al., Geophys. J. Int. 185, 1 (2012), doi: 10.1111/j.1365-246X.2012.05546.x

K. Morishima, Phys. Proc. 80, 19 (2015), doi: j.phpro.2015.11.082, doi: 10.1016/j.phpro.2015.11.082

L. Oláh et al., Sci. Rep. 8, 3207 (2018), doi: 10.1038/s41598-018-21423-9

D. Varga et al., Adv. High Energy Phys, 1962317 (2016), doi: 10.1155/2016/1962317

T. Alexopoulos et al., J. Inst. 5, P02003 (2010), doi: 10.1088/1748-0221/5/02/P02003

T. Alexopoulos et al., Nucl. Inst Meth. Phys. Res. A 617, p.11 (2010), doi: j.nima.2009.06.113

S. Bouteille et al., Nucl. Inst Meth. Phys. Res. A 834, 223 (2016), doi: 10.1016/j.nima.2016.08.002

H.K.M. Tanaka et al., Geoph. Res. Lett. 36, L17302 (2009), doi: 10.1029/2009GL039448

K. Joudre et al., Sci. Rep. 6, 33406 (2016), doi: 10.1038/srep33406

G. Vougioukalakis & G. Fytikas, Develop. Volc. 7, 161 (2005), doi: 10.1016/S1871-644X(05)80037-3

G. Pe-Piper & D.J.W. Piper, J. Volc. Geoth. Res. 260, 146 (2013), doi: 10.1016/j.jvolgeores.2013.05.011

V. Dietrich & P. Gaitanakis. Geol. map of Methana. ETH Zurich, Switzerland (1995)

A. Efstratiou et al., Geoph. Res. Abstr., 14, EGU2012-11673-1 (2012)

W. D’Alessandro et al., J. Volc. Geoth. Res. 178, 818 (2008), doi: 10.1016/j.jvolgeores.2008.09.014

H. Gunawan et al., J. Volc. Geoth. Res. 382, 103 (2017), doi: 10.1016/j.jvolgeores.2017.08.005

T.K. Volti, Tectonophysics 301, 111 (1996), doi: 10.1016/S0040-1951(98)00218-2

R. Nishiyama et al., Geoph. J. Int. 206, 1039 (2016), doi: 10.1002/2013JB010234

S. Agostinelli et al., Nucl. Instr. Meth. A 506, 250 (2003), doi: 10.1016/S0168-9002(03)01368-8

S. Béné et al., Geosci. Instrum. Method. Data Syst. 2, 11 (2013), doi: 10.5194/gi-2-11-2013

R. Nishiyama et al., Geoph. J. Int. 206, 1039 (2016), doi: 10.1093/gji/ggw191

K. Nagamine et al., Nucl. Instr. Meth. A 356, 585 (1995), doi: 10.1016/0168-9002(94)01169-9

K. Nagamine et al., Geoph. Res. Abstr. EGU05-A-10764 (2005)

K. Nakamura et al., J. Phys. G. 37, 075021 (2010), doi: 10.1088/0954-3899/37/7A/075021

A. Lechman et al., Solid Earth, 9, p.1517 (2018), doi: 10.5194/se-9-1517-2018

N.J. Carron, Taylor and Francis, 384p. (2007)

Pierre Auger Observatory, auger.org. (Retrieved 20 August 2018).




DOI: http://dx.doi.org/10.12681/hnps.2612

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Constantin D. Athanassas

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.