| More

A CBF calculation of 1S0 Superfluidity in the Inner Crust of Neutron Stars

Views: 34 Downloads: 12
G. Pavlou, E. Mavrommatis, Ch. C. Moustakidis, J. W. Clark
G. Pavlou, E. Mavrommatis, Ch. C. Moustakidis, J. W. Clark


Singlet S-wave superfluidity of dilute neutron matter in the inner crust of neutron stars is studied within the correlated BCS (Bardeen, Cooper, Schrieffer) method, taking into account both pairing and short-range correlations. First, the equation of state (EOS) of normal neutron matter is calculated within the correlated-basis-function (CBF) method in lowest cluster order using the Argonne V18 and V4′ potentials and Jastrow-type correlation functions. The 1S0 superfluid gap is then calculated with these potentials and correlation functions. The dependence of our results on the choice of the correlation functions is ana- lyzed and the role of higher-order cluster corrections is considered. The values obtained for the 1S0 gap within this simplified scheme are comparable to those from other, more elaborate, methods.

Full Text:



P. Haensel, A.Y. Potekhin, and D.G. Yakovlev, Neutron Stars 1, Equation of State and Structure, Springer (2007).

G. Pavlou, Master Thesis, University of Athens

G. Pavlou, E. Mavrom-matis, Ch. Moustakidis, J. W. Clark, to be published.

J. W. Clark et al., Nucl. Phys. A328 (1979) 45.

R. B. Wiringa, V. G. Stoks, and R. Schiavilla, Phys. Rev. C51 (1995) 38.

R. B. Wiringa and S. C. Pieper, Phys. Rev. Lett. 89 (2002) 182501.

J. M. C. Chen et al., Nucl. Phys. A555 (1993) 59.

O. Benhar et al., Phys. Lett. B60 (1976) 129.

E. Krotscheck and J. W. Clark, Nucl. Phys. A333 (1980) 77

E. Krotscheck, R. A. Smith, and A. D. Jackson, Phys. Rev. B24 (1981) 6404.

V. A. Khodel, V. V. Khodel, J. W. Clark, Nucl. Phys. A598 (1996) 390.

J. Piekarewicz, Phys. Rev. C76 (2007) 064310.

B. Friedman and V. R. Pandharipande, Nucl. Phys. A361 (1981) 501.

M. Baldo and C. Maieron, Phys. Rev. C77 (2008) 015801.

A. Gezerlis and J. Carlson, Phys. Rev. C77 (2008) 032801.

S. Gandolfi et al., Phys. Rev. Lett. 101 (2008) 132501

S. Gandolfi et al., Phys. Rev. C79 (2009) 054005.

J. M. C. Chen et al., Nucl. Phys. A451 (1986) 509.

A. Fabrocini et al., Nucl. Phys. A803 (2008) 137.

A. Schwenk, B. Friman, and G. E. Brown, Nucl. Phys. A713 (2003) 191.

L. G. Cao, U. Lombardo, and P. Schuck, Phys. Rev. C74 (2006) 064301.

J. Wambach, T.L. Ainsworth, and D. Pines, Nucl. Phys. A555 (1993) 128.

H.-J. Schulze et al., Phys. Lett. B375 (1996) 1.

J. Margueron, H. Sagawa, and K. Hagino, Phys. Rev. C76 (2007) 064316.

DOI: http://dx.doi.org/10.12681/hnps.2567


  • There are currently no refbacks.

Copyright (c) 2019 G. Pavlou, E. Mavrommatis, Ch. C. Moustakidis, J. W. Clark

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.