Large Sample Neutron Activation Analysis: Developments and Perspectives


Published: Jan 1, 2020
Keywords:
Neutron Activation Analysis Large Sample
T. Vasilopoulou
F. Tzika
I. E. Stamatelatos
Abstract

Most of the available analytical techniques do not comply with the need for direct trace element analysis of samples of mass exceeding the order of grams. Instead sub-sampling methods are used to obtain representative sampling of the studied material. Large Sample Neutron Activation Analysis (LSNAA) is a powerful technique, which can fulfill this need in a non-destructive way, free of sample size restrictions due to the high penetrating properties of neutrons and gamma rays in matter. However, corrections are required in order to obtain quantitative analysis results. Due to its distinct advantage to allow for the analysis of whole objects, LSNAA has found successful applications in diverse fields of science and technology. In the present study, the LSNAA method and applications representative of the capabilities of the technique are presented. Moreover, recent developments and future perspectives of the technique are discussed.

Article Details
  • Section
  • Oral contributions
References
A. Schwedt, H. Momusen, N. Zacharias, Archaeometry 46 (2004) 85-101
International Atomic Energy Agency (2009) Report of the 1st RCM on Application of LSNAA for Inhomogeneous Bulk Archaeological Samples and Bulk objects, IAEA, Vienna, Austria, 19-23 January 2009
G. L. O. Faria, M. Â. B. C. Menezes, L. Ribeiro, C. Jacome, International Nuclear Atlantic Conference - INAC 2009, Rio de Janeiro, Brazil, September 27 to October 2, 2009
F. Songlin, F. Xiangqian, Y. Lingtong, L. Li, 2nd RCM of the IAEA CRP on Application of LSNAA for Inhomogeneous Bulk Archaeological Samples and Bulk objects, Delft, The Netherlands, 17-21 May 2010
M. Shaat, 2nd RCM of the IAEA CRP on Application of LSNAA for Inhomogeneous Bulk Archaeological Samples and Bulk objects, Delft, The Netherlands, 17-21 May 2010
B. J. B. Nyarko, M. Asamoah, O. Gyampo, E. H. K. Akaho, S. Yamoah, E. Mensimah, R. G. Abrefah, Annals of Nuclear Energy 38 (2011) 431-437
F. Tzika, I.E. Stamatelatos, J. Kalef-Ezra, P. Bode, Nukleonika 49 (2004) 115-121
R. Acharya , K. K. Swain, K. Sudarshan, R. Tripathi, P. K. Pujari, A. V. R. Reddy, Nucl. Instrum. Meth. A 622 (2010) 460-463
M. A. Islam, H. Matsue, M. Ebihara, 4th Asian-Pacific Symposium on Radiochemistry (APSORC), California, USA, November 30 to December 4, 2009
J. Abdullah , V. Mosorov, R. Yahya, N. S. Dahing, M. R. Shari, A. M. Terry, In Proc. 6th World Congress on Industrial Process Tomography, Beijing, China, September 2010, pp. 976-982
P. Bode, R. M. W. Overwater, J. J. M. De Goeij, J. Radioanal. Nucl. Chem. 216 1 (1997) 5-11
E. Montoya, 2nd RCM of the IAEA CRP on Application of LSNAA for Inhomogeneous Bulk Archaeological Samples and Bulk objects, Delft, The Netherlands, 17-21 May 2010
C. Roth, D. Barbos, D. Gugiu, A. Datcu, D. Dobrea, M. Preda, M. Gligor, M. B. Mweetwa, J. Radioanal. Nucl. Chem. (2011) DOI 10.1007/s10967-011-1231-7
V. Zinovyev, 2nd RCM of the IAEA CRP on Application of LSNAA for Inhomogeneous Bulk Archaeological Samples and Bulk objects, Delft, The Netherlands, 17-21 May 2010
Kh. Haddad, N. Alsomel, J. Radioanal. Nucl. Chem. 288 (2011) 823–828
S. Laoharojanaphand, 2nd RCM of the IAEA CRP on Application of LSNAA for Inhomogeneous Bulk Archaeological Samples and Bulk objects, Delft, The Netherlands, 17-21 May 2010
W. D. Reece, 2nd RCM of the IAEA CRP on Application of LSNAA for Inhomogeneous Bulk Archaeological Samples and Bulk objects, Delft, The Netherlands, 17-21 May 2010
P.A. Beeley, R.G. Garrett, J. Radioanal. Nucl. Chem. 167 (1993) 177-185
A. G. C. Nair, R. Acharya, K. Sudarshan, S. Gangotra, A. V. R. Reddy, S. B. Manohar and A. Goswami, Anal. Chem. 75 (2003) 4868-4874
R. M. W. Overwater, P. Bode, J. J. M. De Goeij and J. E. Hoogenboom, Anal. Chem. 68 (1996) 341-348
F. Tzika and I. E. Stamatelatos, Nucl. Instrum. Meth. B 213 (2004) 177-181
I. E. Stamatelatos and F. Tzika, Annali di Chimica 97 (2007) 505-512
I. E. Stamatelatos, F. Tzika, T. Vasilopoulou, M. J. J. Koster-Ammerlaan, J. Radioanal. Nucl. Chem. 283 (2010) 735–740
K. Sueki, Y. Oura, W. Sato, H. Nakahara, T. Tomizawa, J. Radioanal. Nucl. Chem. 234 (1998) 27-31
K. B. Dasari, R. Acharya, K. K. Swain, N. Lakshmana Das, A. V. R. Reddy, J. Radioanal. Nucl. Chem. 286 (2010) 525–531
E. A. N. Fernandes, P. Bode, J. Radioanal. Nucl. Chem. 244 3 (2000) 589–594
H. W. Baas, M. Blaauw, P. Bode, J. J. M. De Goeij, Fresenius J Anal Chem 363 (1999) 753-759 [28] F. S. Tagliaferro, E. A. N. Fernandes, P. Bode, H. W. Baas, J. Radioanal. Nucl. Chem. 278 2 (2008) 415–418
K. Kasviki, I. E. Stamatelatos, J. Kalef-Ezra, J. Radioanal. Nucl. Chem. 271 1 (2007) 225–231 [30] R. Gwozdz, F. Grass, J. Radioanal. Nucl. Chem. 244 3 (2000) 23–529
R. Acharya, A. G. C. Nair, K. Sudarshan, A. Goswami, A. V. R. Reddy, J. Radioanal. Nucl. Chem. 278 3 (2008) 617–620
R. Acharya, A. G. C. Nair, A. V. R. Reddy, A. Goswami, J. Nucl. Mat. 326 (2004) 80-85
R. Acharya, A. G. C. Nair, A. V. R. Reddy, A. Goswami, Anal. Chim. Acta 522 (2004) 127-132 [34] C. Segebade, P. Bode, W. Goerner, J. Radioanal. Nucl. Chem. 271 2 (2007) 261–268
T. Vasilopoulou, F. Tzika, M. J. J. Koster-Ammerlaan and I.E. Stamatelatos, J. Radioanal. Nucl. Chem. (2011) DOI: 10.1007/s10967-011-1130-y
F. Tzika, I. E. Stamatelatos, J. Kalef-Ezra, J. Radioanal. Nucl. Chem. 271 (2007) 233-240
R. M. W. Overwater, P. Bode, Applied Radiation and Isotopes 49 (1998) 967-976
T. Vasilopoulou, F. Tzika, I. E. Stamatelatos, J. Radioanal. Nucl. Chem. (2011) DOI: 10.1007/s10967-011-1204-x
F. A. Balogun, N. M. Spyrou, C. A. Adesanmi, Nucl. Instrum. Meth. B 114 (1996) 387–393