| More

Investigation of Photon Attenuation Properties of CR-39 Lens

Views: 66 Downloads: 29
Canel Eke, A. Yildirim
Canel Eke, A. Yildirim

Abstract


The purpose of this study is to investigate photon attenuation parameters of Colombia Resin-39 (CR-39) lens, which are linear attenuation coefficient (LAC), mass attenuation coefficient (MAC), half value layer (HVL), tenth value layer (TVL), mean free path (MFP), effective atomic number (Zeff) and effective electron density (Neff). MACs were determined theoretically and with simulation in the energy range from 0.01 to 105 MeV. Also, obtained MACs of CR-39 lens were compared with MACs of pure aluminum and lead. Theoretically obtained Zeff values were compared with Zeff results obtained by the computer software.

The results of this study are; a) the theoretically obtained MACs values are in agreement with MACs  obtained results from simulation software, b) the theoretically obtained Zeff values are in agreement with Zeff obtained by the computer software c) the MACs of CR-39 lens are much lower than MACs of pure lead whereas there is not too much differences between MACs of CR-39 and pure aluminium d) the HVLs, TVLs and MFPs rise with increasing photon energy while the LACs and  MACs reduce with increasing photon energy.


Keywords


mass attenuation coefficient; gamma-ray spectrometry; CR-39 lens

Full Text:

PDF

References


A.Y. Abdel-Haseib et al., Journal of Nuclear Radiation and Physics, 13, 81 (2018).

S. Gowda et al., Pramana-J. Phys. 63, 529 (2004), doi: 10.1007/BF02704481

S.R. Manohara et al., Nucl. Instr. Meth. Phys. Res. B. 264, 9 (2007), doi:10.1016/j.nimb.2007.08.018

R. Biswas et al., J. Radiat. Res. Appl. Sc. 9, 26 (2016), doi: 10.1016/j.jrras.2015.08.005

N. Abbasova et al., Results in Physics. 12, 2202 (2019), doi: 10.1016/j.rinp.2019.02.068

G.R. Gilmore., 2nd Edition, Wiley-VCH Verlag, Wenheim, Germany,(2008), ISBN 978-0-470-86196-7

D. K. Gaikwad et al., Radiat. Phys. Chem. 138, 75 (2017), doi: 10.1016/j.radphyschem.2017.03.040

P.P. Pawar et al., Radiat. Phys. Chem. 92, 22 (2013), doi: 10.1016/j.radphyschem.2013.07.004

V.P. Singh et al., Radioprotection, 53, 145 (2018), doi: 10.1051/radiopro/2018008

A. H. Taqi et al., J. Radiat. Res. Appl. Sc. 10, 252 (2017), doi: 10.1016/j.jrras.2017.05.008

M.W. Marashdeh et al., Results in Physics, 5, 228 (2015), doi: 10.1016/j.rinp.2015.08.009

B.M. Ladhaf et al., Radiat. Phys. Chem. 109, 89 (2015), doi: 10.1016/j.radphyschem.2014.12.015

D. Demir et al., Ann. Nucl. Energy. 48, 17 (2012), doi: 10.1016/j.anucene.2012.05.013

M. Kurudirek et al., Radiat. Phys. Chem. 78, 751 (2009), doi: 10.1016/j.radphyschem.2009.03.070

K. Kirdsiri et al., Ann. Nucl. Energy. 38, 1438 (2011), doi: 10.1016/j.anucene.2011.01.031

A.M. Zoulfakar et al., Appl. Radiat. Isotopes. 127, 269 (2017), doi: 10.1016/j.apradiso.2017.05.007

K.S. Mann et al., Nucl. Eng. Technol. 49, 792 (2017), doi: 10.1016/j.net.2016.12.016

R.R. Bhosale et al., Nucl. Techn. Radiat. Prot. 32, 288 (2017), doi: 10.2298/NTRP1703288B

S. M. Vahabi, Vacuum. 136, 73 (2017), doi: 10.1016/j.vacuum.2016.11.011

K.S. Mann et al., Radiat. Phys. Chem. 106, 247 (2015) doi: 10.1016/j.radphyschem.2014.08.005

O. Gurler et al., Acta Phys. Pol. A. 130, 236 (2016), doi: 10.12693/APhysPolA.130.236

N.B.J. Traynor et al., Appl. Spectrosc.72, 591 (2018), doi: 10.1177/0003702817745071

M.F. Zaki et al., J. Lumin. 132, 119 (2012), doi:10.1016/j.jlumin.2011.08.001

M.Y. Shoeib et al., Beni-Seuf Univ. J. Appl. Sci. 3, 74 (2014), doi: 10.1016/j.bjbas.2014.02.010

F. Sen et al., American Journal of Optics and Photonics, 2, 7 (2014), doi: 10.11648/j.ajop.20140201.12

J.H. Hubbell et al., National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA, NISTIR 5632 (1995)

L. Gerward et al., Radiat Phys. Chem. 71, 653 (2004) doi:10.1016/j.radphyschem.2004.04.040

M.J. Berger et al., 1987/99. Web Version 1.2, available at http:// physics.nist.gov/xcom . National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA, NBSIR 87-3597 (1987/99).

R. Mirji et al., Radiat. Phys. Chem. 135, 32 (2017), doi: 10.1016/j.radphyschem.2017.03.001

S. N. Ahmed. Academic Press Inc. Published by Elsevier, UK (2007), ISBN–13: 978-0-12-045581-2

S. Agostinelli et al., Nucl. Instr. Meth. Phys. Res. A. 506, (2003), doi: 10.1016/S0168-9002(03)01368-8

J. Allison et al., IEEE Transactions on Nuclear Science 53, (2006), doi: 10.1109/TNS.2006.869826

J. Allison et al., Nucl. Instr. Meth. Phys. Res. A. 835, (2016), doi: 10.1016/j.nima.2016.06.125

A. Kumar., Radiat. Physc. Chem., 127, 48 (2016), doi: 10.1016/j.radphyschem.2016.06.006

M.L. Taylor et al, Med. Phys. 39, 1769-1778 (2012), doi: 10.1118/1.3689810




DOI: http://dx.doi.org/10.12681/hnps.2475

Refbacks

  • There are currently no refbacks.




Copyright (c) 2020 Canel EKE, A. Yildirim

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.