Symmetries of Anisotropic Harmonic Oscillators with Rational Ratios of Frequencies and their Relations to U(N) and O(N+1)


Dennis Bonatsos
C. Daskaloyannis
P. Kolokotronis
Abstract

The concept of bisection of a harmonic oscillator or hydrogen atom, vised in the past in establishing the connection between U(3) and 0(4), is generalized into multisection (trisection, tetrasection, etc). It is then shown that all symmetries of the N-dimensional anisotropic harmonic oscillator with rational ratios of frequencies (RHO), some of which are underlying the structure of superdeformed and hyperdeformed nuclei, can be obtained from the U(N) symmetry of the corresponding isotropic oscillator with an appropriate combination of multisections. Furthermore, it is seen that bisections of the N-dimensional hydrogen atom, which possesses an 0(N+1) symmetry, lead to the U(N) symmetry, so that further multisections of the hydrogen atom lead to the symmetries of the N-dim RHO. The opposite is in general not true, i.e. multisections of U(N) do not lead to 0(N+1) symmetries, the only exception being the occurence of 0(4) after the bisection of U(3).

Article Details
  • Section
  • Oral contributions
References
J. M. Jauch and E. L. Hill, Phys. Rev. 57 (1940) 641.
Yu. N. Demkov, Zh. Eksp. Teor. Fiz. 44 (1963) 2007 [Soviet Phys. JETP 17 (1963) 1349].
F. Duimio and G. Zambotti, Nuovo Cimento 43 (1966) 1203.
G. Maiella, Nuovo Cimento 52 (1967) 1004.
I. Vendramin, Nuovo Cimento 54 (1968) 190.
G. Maiella and G. Vilasi, Lett. Nuovo Cimento 1 (1969) 57.
A. Cisneros and H. V. Mcintosh, J. Math. Phys. 11 (1970) 870.
B. Mottelson, Nucl. Phys. A 522 (1991) le.
W. D. M. Rae, Int. J. Mod. Phys. A 3 (1988) 1343.
G. Rosensteel and J. P. Draayer, J. Phys. A 22 (1989) 1323.
D. Bhaumik, A. Chatterjee and B. Dutta-Roy, J. Phys. A 27 (1994) 1401.
W. Nazarewicz and J. Dobaczewski, Phys. Rev. Lett. 68 (1992) 154.
P. J. Nolan and P. J. Twin, Ann. Rev. Nucl. Part. Sci. 38 (1988) 533.
R. V. F. Janssens and T. L. Khoo, Ann. Rev. Nucl. Part. Sci. 41 (1991) 321.
W. D. M. Rae and J. Zhang, Mod. Phys. Lett. A 9 (1994) 599.
J. Zhang, W. D. M. Rae and A. C. Merchant, Nucl. Phys. A 575 (1994) 61.
D. M. Brink, in Proc. Int. School of Physics, Enrico Fermi Course XXXVI, Varenna 1966, ed. C. Bloch (Academic Press, New York, 1966) p. 247.
T. P. Martin, T. Bergmann, H. Göhlich and T. Lange, Ζ. Phys. D 19 (1991) 25.
A. Bulgac and C. Lewenkopf, Phys. Rev. Lett. 71 (1993) 4130.
D. G. Ravenhall, R. T. Sharp and W. J. Pardee, Phys. Rev. 164 (1967) 1950.
D. Bonatsos, C. Daskaloyannis, P. Kolokotronis and D. Lenis, preprint hepth/ 9411218
D. Bonatsos, C. Daskaloyannis, P, Kolokotronis and D. Lenis, in Proceedings of the 5th Hellenic Symposium on Nuclear Physics (Patras 1994), Advances in Nuclear Physics EUR 16302, ed. C. Syros and C. Ronchi (European Commission, Luxembourg, 1995) p. 14.
K. T. Hecht, Nucl. Phys. 63 (1965) 177.
W. J. Holman ΠΙ, J. Math. Phys. 10 (1969) 1710.
S. P. Alliluev, Zh. Eksp. Teor. Fiz. 33 (1957) 200 [Soviet Phys. JETP 6 (1958) 156].
M. Hamermesh, Group Theory and its Application to Physical Problems (Dover, New York, 1962).