Intermediate-Energy Fragmentation of Heavy-Element Beams: A Novel Approach Towards the Nuclear Drip-Lines


G. A. Souliotis
Abstract

The fragmentation of heavy beams at intermediate energy and the opportunities offered by this in the exploration of heavy nuclei near the drip lines will be discussed. First, a study of 1 9 7Au projectile fragmentation at 30 MeV/nucleon will be presented in which an appreciable number of new p-rich nuclei were observed. Perspectives of proton radioactivity studies using the fragmentation approach will be discussed. Second, a study of the fission of 2 3 8U projectiles at 20 MeV/nucleon will be presented, where a number of new neutron rich nuclei were identified. Production rates of extremely η-rich nuclides from a typical projectile-fragmentation facility are given. A large number of nuclei along the astrophysical r-process path can be investigated and approach of the neutron dripline in the region Z=45-50 may be possible. The ability to produce and study these either p-rich or η-rich nuclei at intermediate (and possibly lower) energy facilities may open a variety of possibilities for experimental studies of exotic heavy nuclei.

Article Details
  • Section
  • Oral contributions (deprecated)
References
W. Nazarewicz et al., Nucl. Phys. News, Vol. 6, No 3, (1996), p. 17.
In the ISOL method, a high energy, high intensity light ion beam strikes a thick target from which the stopped product nuclei diffuse out and enter an ion source of a mass separator.
In the PF method, a beam of projectile nuclei is fragmented by passing through a thin foil. The resulting products have high kinetic energies, leave the target and are subjected to mass separation directly without passing through an ion source.
H. Geissel and G. Munzenberg, Ann. Rev. Nucl. Part. Sci. 45 (1995) 163.
M. Bernas et al., Phys.Lett. B331 (1994) 19; M. Bernas et al., Nucl. Phys. A616 (1997) 352c.
G. A. Souliotis et al., Phys. Rev. C55 (1997) R2146.
G. A. Souliotis et al., Phys. Rev. C (submitted for publication).
B. M. Sherrill et al., Nucl. Instrum. Methods Β 56/57 (1992) 1106.
Κ. Hanold et al., Phys. Rev. C 52 (1995) 1462.
G. A. Souliotis et al., Phys. Rev. C 57 (1998) 3129.
G. Friedlander et al., Nuclear and Radiochemistry, 3rd Edition (Wiley, New York, 1981) p. 45.
K. Siimmerer et al., Phys. Rev. C 42 (1990) 2546.
R. J. Charity, Phys. Rev. C58 (1998) 1073.
S. Liran and N. Zeldes, At. Data and Nucl. Data Tables 17 (1976) 431.
P. Moller, J. Nix, and K. Kratz, At. Data Nucl. Data Tables 66 (1997) 131.
See, for example, Table of Isotopes, 8th Edition, R. B. Firestone, Ed. (Wiley, New York, 1996), or the more comprehensive ENSDF compilation (as of February, 1999)
See, for example. C. N. Davids, et al., Phys. Rev. C55 (1997) 2255.
See, for example, M. Hirsch et al., At. Data Nucl. Data Tables 53 (1993) 165.
S. Hofmann, in Nuclear Decay Modes, D. N. Poenaru, ed., (Instit. Physics, Bristol, UK, 1996) p. 143.
F. D. Becchetti and G. W. Greenlees, Phys. Rev. 182 (1969) 1190.
K. N. Huang and H. Mark, At. Data and Nucl. Data Tables 18 (1976) 243.
The K500&K1200 Proposai, MSUCL-939, 1994.
Marti, F., private communication.
S. Aberg, P. B. Semmes and W. Nazarewicz, Phys. Rev. C56 (1997) 1762.
European Radioactive Beam Facilities, NUPECC, May 1993.
E. Piasecki et al., Phys. Lett. Β 351 (1995) 412.
C.H. Lee et al., Phys. Rev. C38 (1988) 1757.
Η. Kudo et al., Phys. Rev. C57 (1998) 178.
A.C. Wahl, At. Data Nucl. Data Tables 39 (1988) 1.
G. A. Souliotis et al., in preparation.
A. Staudt et al., At. Data N. Data Tables 44 (1990) 79.