Studying background processes of the exotic neutrino-nucleus reactions


Published: Mar 8, 2019
Keywords:
Non-Standard neutrino-nucleus reactions Flavour-changing neutral-current Nuclear structure calculations Supernova neutrinos
D. K. Papoulias
T. S. Kosmas
Abstract

The background processes of the flavour changing neutral current (FCNC) processes, predicted by various new-physics models to occur in the presence of nuclei, are examined by computing the relevant nuclear matrix elements within the context of the quasi-particle RPA using realistic strong two-body forces. Our main goal is to explore the role of the non-standard interactions (NSI) in the leptonic sector and specifically: (i) in lepton flavour violating (LFV) processes involving neutrinos νl and ν ̃l, l = e, μ, τ and (ii) in charged lepton flavour violating (cLFV) processes involving the charged leptons l− or l+. As concrete nuclear system we have chosen the stopping target of μ− → e− conversion experiment, i.e. the 48Ti nucleus of the PRIME/PRISM experiment at J-PARC. This experiment has been designed to reduce the single event sensitivity down to 10−16–10−18 in searching for charged lepton mixing events. We also present, stringent constraints on the flavour violating parameters entering the NSI Lagrangians that have been obtained by taking advantage of our detailed nuclear structure calculations and exploiting the present limits or the sensitivity of the proposed exotic μ− → e− experiments.

Article Details
  • Section
  • Oral contributions
References
T.W. Donnelly and R.D. Peccei, Phys. Rept. 50 (1979) 1.
P.S. Amanik, G. M. Fuller and B. Grinstein, Astropart. Phys. 24 (2005) 160.
P.S. Amanik and G.M. Fuller, Phys. Rev. D 75 (2007) 083008.
F. Deppisch, T.S. Kosmas and J.W.F. Valle, Nucl. Phys. B 752 (2006) 80.
D.K. Papoulias and T.S. Kosmas, Phys. Lett. B 728 (2014) 482-488
S. Davidson, C. Pena-Garay, N. Rius, and A. Santamaria, JHEP 03 (2003) 011.
J. Barranco et. al., JHEP 0512 (2005) 021.
K. Scholberg, Phys. Rev. D 73 (2006) 033005.
J. Barranco, O.G. Miranda, C.A. Moura and J.W.F. Valle, Phys. Rev. D 73 (2006) 113001.
Y.G. Cui et al. (COMET Collaboration), KEK Report 2009-10.
R. Bernstein and G. Kribs, talk at 2012 Project X Physics Study (PXPS12), Fermilab, June 14-28, 2012 Chicago USA.
D.Z. Freedman, et. al., Annu. Rev. Nucl. Sci. 27 (1977) 167.
A. Drukier and L. Stodolsky, Phys. Rev. D 30 (1984) 2295.
D.K. Papoulias and T.S. Kosmas, J. Phys. Conf. Ser. 410 (2013) 012123.
T.W. Donnelly and J.D.Walecka, Nucl. Phys. A 274 (1976) 368.
V.Ch. Chasioti and T.S. Kosmas, Nucl. Phys. A 829 (2009) 234.
T.S. Kosmas et. al., Nucl. Phys. A 570 (1994) 637.
T.S. Kosmas and J.D. Vergados, Phys. Rept. 264 (1996) 251.
T.S. Kosmas, S. Kovalenko and I. Schmidt, Phys. Lett. B 511 (2001) 203; Phys. Lett. B 519 (2001) 78.
K.G. Balasi, E Ydrefors and T.S. Kosmas, Nucl. Phys. A 868 (2011) 82.
K. Hirata, et al., Phys. Rev. Lett. 58 (1987) 1490; R.M. Bionta, et al., Phys. Rev. Lett. 58 (1987) 1494.
Y. Giomataris, J.D. Vergados, Phys. Lett. B 634 (2006) 23.
C.J. Horowitz, K.J. Coakley, and D.N. McKinsey, Phys. Rev. D 68 (2003) 023005.
M. Biassoni and C. Martinez, Astropart. Phys. 36 (2012) 151.
T.S. Kosmas and J.D. Vergados, Nucl. Phys. A 536 (1992) 72.
D.K. Papoulias and T.S. Kosmas, Proc. 21st Symposium of the Hellenic Nuclear Physics Society 2013, May 30-31, Athens,
Greece, in press.
J. Engel, Phys. Lett. B 264 (1991) 114.
T.S. Kosmas and J.D. Vergados, Phys. Lett. B 215 (1988) 460.
T.S. Kosmas and J.D. Vergados, Nucl. Phys. A 510 (1990) 641.
J. Monroe and P. Fisher, Phys. Rev. D 76 (2007) 033007.
H. De Vries et. al., At. Data and Nucl. Data Tables 36 (1987) 495536.