Opportunities for nuclear reaction studies at future facilities


M. Veselsky
J. Klimo
N. Vujisicova
G. A. Souliotis
Abstract

Opportunities for investigations of nuclear reactions at the future nuclear physics facilities such as radioactive ion beam facilities and high-power laser facilities are considered. Post-accelerated radioactive ion beams offer possibilities for study of the role of isospin asymmetry in the reaction mechanisms at various beam energies. Fission barrier heights of neutron-deficient nuclei can be directly determined at low energies. Post-accelerated radioactive ion beams, specifically at the future facilities such as HIE-ISOLDE, SPIRAL-2 or RAON-RISP can be also considered as a candidate for production of very neutron-rich nuclei via mechanism of multi-nucleon transfer. High-power laser facilities such as ELI-NP offer possibilities for nuclear reaction studies with beams of unprecedented properties. Specific cases such as ternary reactions or even production of super-heavy elements are considered.

Article Details
  • Section
  • Oral contributions
References
I. V. Panov et al., ”Calculations of fission rates for r-process nucleosynthesis”, Nucl. Phys. A 747, 633 (2005).
A.N. Andreyev et al., Phys. Rev. Letters 105, 252502 (2010).
A.J. Sierk, Phys. Rev. C 33, 2039 (1986).
P. Möller et al., Phys. Rev. C 79, 064304 (2009)
M. Veselsky, A.N. Andreyev, S. Antalic, A.J. Sierk, P. Moller, K. Nishio, M.Huyse, P. Van Duppen, M. Venhart, Fission barrier heights of neutron-deficient mercury nuclei, Phys. Rev. C 86, 024308 (2012).
A.J. Koning, S. Hilaire and M.C. Duijvestijn, ’TALYS: Comprehensive nuclear reaction modeling’, Proceedings of the International Conference on Nuclear Data for Science and Technology - ND2004, AIP vol. 769, eds. R.C. Haight, M.B. Chadwick, T. Kawano, and P. Talou, Sep. 26 - Oct. 1, 2004, Santa Fe, USA, p. 1154 (2005).
R. Raabe and the ACTAR coll., ACTAR: An Active Target detector for the study of extremely exotic nuclei. Available at http://perswww.kuleuven.be/ u0004046/actar.pdf; R. Raabe and the ACTAR coll., in Nuclear structure and dynamics ’09, AIP Conf. Proc. 1165, 339-342.
V.V. Volkov, Phys. Rep. 44, 93 (1978).
M. Veselsky et al., Phys. Rev. C 62, 064613 (2000).
M. Veselsky, Nucl. Phys. A 705, 193 (2002).
G.A. Souliotis et al., Phys. Lett. B 543, 163 (2002).
G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003).
G.A. Souliotis et al., Phys. Rev. C 84, 064607 (2011).
L. Tassan-Got, PhD Thesis, 1988, Orsay, France, IPNO-T-89-02, 1989.
L. Tassan-Got, C. Stefan, Nucl. Phys. A 524, 121 (1991).
J.P. Bondorf et al., Phys. Rep. 257, 133 (1995).
G. A. Souliotis et al., Nucl. Instr. and Meth. B 204, 166 (2003).
L. Corradi et al., Nucl. Phys. A 734, 237 (2004).
W. Krolas et al., Nucl. Phys. A 724, 289 (2003).
L. Corradi et al., Nucl. Phys. A 701, 109c (2002).
A.G. Artukh et al., Nucl. Phys. A 283, 350 (1977).
M. Veselsky and G.A. Souliotis, NPA 872, 1 (2011).
Y.X. Watanabe et al, Nucl. Instr. and Meth. B 371, 752 (2013).
K.W.D. Ledingham et al., Phys. Rev. Lett. 84 (2000) 899.
T.E. Cowan et al., Phys. Rev. Lett. 84 (2000) 903.
H. Schwoerer et al., Europhys. Lett. 61 (2003) 47.
D. Habs et al., Applied Physics B 103 (2011) 471.