Nuclear structure and the nucleon effective mass: explorations with the versatile KIDS functional


Published: Apr 1, 2019
Keywords:
KIDS functional equation of state effective mass nuclear incompressibility dipole polarizability
P. Papakonstantinou
H. Gil
Abstract

The connection from the structure and dynamics of atomic nuclei (finite nuclear system) to the nuclear equation of state (thermodynamic limit) is primarily made through nuclear energy-density functional (EDF) theory. Failure to describe both entities simultaneously within existing EDF frameworks means that we have either seriously misjudged the scope of EDF or not fully taken advantage of it. Enter the versatile KIDS Ansatz, which is based on controlled, order-by-order extensions of the nuclear EDF with respect to the Fermi momentum and allows a direct mapping from a given, immutable equation of state to a convenient Skyrme pseudopotential for applications in finite nuclei. A recent proof-of-principle study of nuclear ground-states revealed the subversive role of the effective mass. Here we summarize the formalism and previous results and present further explorations related to giant resonances. As examples we consider the electric dipole polarizability of 68Ni and the giant monopole resonance (GMR) of heavy nuclei, particularly the fluffiness of 120Sn. We find that the choice of the effective mass parameters and that of the compression modulus affect the centroid energy of the GMR to comparable degrees.

Article Details
  • Section
  • Oral contributions
References
M. Bender et al., Rev. Mod. Phys. 75, 121 (2003)
T. Nakatsukasa et al., Rev. Mod. Phys. 88, 045004 (2016)
P. Papakonstantinou et al., Phys. Rev. C 97, 014312 (2018)
H. Gil et al., arXiv: 1805.11321
M. Dutra et al., Phys. Rev. C 85, 035201 (2012)
G. Ahn and P. Papakonstantinou, these proceedings
G. Ahn, MSc Thesis, University of Athens, 2018
H. Gil et al., Acta Phys. Pol. B 48, 305 (2017)
Y.M.Kim et al., New Physics: Sae Mulli 68, p.707 (2018)
A. Akmal et al., Phys. Rev. C 58, 1804-1828 (1998)
J. Margueron et al., Phys. Rev. C 97, 025805 (2018)
J. Margueron et al., Phys. Rev. C 97, 025806 (2018)
O. B. Tarasov et al., Phys. Rev. Lett. 121, 022501 (2018)
P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 81, 051303(R) (2010)
A. Tamii et al., Phys. Rev. Lett. 107, 062502
D. M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013)
T.Aumann and D. M. Rossi, private communication
U. Garg et al., Nucl. Phys. A 788, p.36 (2007)
D. H. Youngblood et al., Phys. Rev. C 69, 034315 (2004)