Nuclear structure and the nucleon effective mass: explorations with the versatile KIDS functional
Abstract
The connection from the structure and dynamics of atomic nuclei (finite nuclear system) to the nuclear equation of state (thermodynamic limit) is primarily made through nuclear energy-density functional (EDF) theory. Failure to describe both entities simultaneously within existing EDF frameworks means that we have either seriously misjudged the scope of EDF or not fully taken advantage of it. Enter the versatile KIDS Ansatz, which is based on controlled, order-by-order extensions of the nuclear EDF with respect to the Fermi momentum and allows a direct mapping from a given, immutable equation of state to a convenient Skyrme pseudopotential for applications in finite nuclei. A recent proof-of-principle study of nuclear ground-states revealed the subversive role of the effective mass. Here we summarize the formalism and previous results and present further explorations related to giant resonances. As examples we consider the electric dipole polarizability of 68Ni and the giant monopole resonance (GMR) of heavy nuclei, particularly the fluffiness of 120Sn. We find that the choice of the effective mass parameters and that of the compression modulus affect the centroid energy of the GMR to comparable degrees.
Article Details
- How to Cite
-
Papakonstantinou, P., & Gil, H. (2019). Nuclear structure and the nucleon effective mass: explorations with the versatile KIDS functional. HNPS Advances in Nuclear Physics, 26, 104–111. https://doi.org/10.12681/hnps.1884
- Issue
- Vol. 26 (2018): HNPS2018
- Section
- Oral contributions